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Motivation

Ensemble Kalman Filtering is one of the most popular data
assimilation (DA) technique nowadays.

• Works on large-scale problems (no need to work with large covariance
matrix).

• Allows flexible prior specification (simulations, ...).

However ...

In its most commonly used form (localized, sequential,
square root filter), it is WRONG.

Will show recent computational techniques (distributed arrays) can fix it.
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Section 1

Introduction: the Kalman Filter and its Variants



Kalman Filter: Setting

Unknown (true) state vector

ψ∗
t ∈ Rm

Dynamics

ψ∗
t+1 = Ftψ∗

t + δt, δt ∼ N (0,∆t),

where Ft : Rm → Rm is linear and δ is random model noise.

Observations
At each time step t, we are given observations:

yt = Gtψ
∗
t + εt, εt ∼ N (0,Et), (1)

where Gt : Rm → Rnt is linear and εt is a random observation noise vector.



Kalman Filter: Update Equations

Bayesian approach: Start with prior Ψ0 ∼ N (µ0,Σ0) on initial state ψ0.

• Approximate ψt by distribution conditionally on the dynamics and the
observations up to t.

• Forecast Step:

µf
t = Ftµt−1, Σf

t = FtΣt−1FTt + ∆t.

• Update step: Conditional distribution of the state is Gaussian with
mean and covariance:

µt = µf
t +Kt

(
yt −Gtµ

f
t

)
, Σt = Σf

t −KtGtΣ
f
t ,

with Kt = Σf
t G

T
t

(
GtΣ

f
t G

T
t +Et

)−1

Tedious for high-dimensional state spaces.



Ensemble Kalman Filter [Eve94, Eve03, E+09]

Idea
Replace conditional distribution by ensemble of i.i.d. samples of it

ψ
(1)
t , . . . ,ψ

(p)
t

i.i.d.∼ N (µt,Σt)

• Avoids updating large covariance matrices.

• Flexible ”prior” specification by providing a starting ensemble.

Original EnKF formulation presents two challenges:

1. Observations have to be randomly perturbed in order for update not
to underestimate the variance.

2. Need to estimate the covariance from a limited set of ensemble
members.



Ensemble Kalman Filter: Square Root Version [WH02, TAB+03]

Perturbed observations be avoided by using modified deterministic updates.

Algorithm

Update ensemble mean ψ̄t and deviations ψ
(i)′

t := ψ
(i)
t − ψ̄t via:

ψ̄t = ψ̄ft + K̂
(
yt −Gψ̄ft

)
, (2)

ψ
(i)
t = ψ

f(i)
t − K̃tGψ

f(i)
t , (3)

K̃t = Σ̂f
t G

T
t

(√
GtΣ̂

f
t G

T
t +Et

)−1(√
GtΣ̂

f
t G

T
t +Et +

√
Et

)−1

,

where Σ̂f is an estimator of Σf and K̃ is the Kalman gain with Σf

replaced by Σ̂f .

Overperforms EnKF with perturbed observations for small ensemble sizes.



Localization

Problem
Bare empirical sample covariance as estimator of Σf

t suffers from
undersampling errors.

• Need to regularize estimate of the covariance.

Localization
Estimate using empirical covariance tapered by an SPD matrix:

Σ̂f
t = Cov

((
ψ
f(i)
t

)
i=1,...,p

)
◦ ρ.

In spatial problems, localization matrix built from some kernel function.

Problem: In practice, data has to be assimilated sequentially, but
the localized update equations are wrong in that setting.



Section 2

Distributed, Non-Sequential Ensemble Kalman
Filtering



Dask Distributed Arrays
Dask library provide easy interface to distributed arrays (www.dask.org).

Figure: Dask workflow overview (courtesy dask.org under BSD 3-clause licence)

• high-level, numpy-like interface

• arrays distributed in cluster memory under the hood

• lazy evaluation via task graphs

Easy to scale ML workflows (Ensemble Kalman filter, ...).

www.dask.org


EnSRF and Dask: Lazy, Distributed SVD
Halko’s algorithm [HMT11] provides fast rank k approximate SVD. Lazy,
distributed implementation in dask.array.linalg.compressed svd.

Can be used to compute approximate inverses and square roots of
covariance estimate:

Σ̂−1 ≈ [u1, . . . , uk]

1/λ1
. . .

1/λk

 [u1, . . . , uk]
T

√
Σ̂ ≈ [u1, . . . , uk]


√
λ1

. . . √
λk

 [u1, . . . , uk]
T ,

where λi and ui, i = 1, . . . , k are the k-largest (approximate) singular
values and corresponding left singular vectors.

In a lazy setting, this means that one only has to store 2k(m+ 1) values.



Lazy, Distributed SVD and EnSRF

Distributed (approximate) SVD allows to run all-at-once (aao) EnSRF on
large datasets.

Algorithm 1 Distributed EnSRF update

Require: Ensemble ψ
(1)
t , . . . ,ψ

(p)
t , observation operator Gt and observed data yt

SVD cutoff rank k.
Ensure: Updated ensemble ψ

(1)
t , . . . ,ψ

(p)
t .

Build localized estimated covariance Σ̂t in distributed memory.

(λi, ui)i=1,...,k ← DistributedSVD(Σ̂t, rank = k)
Σ̂−1

t ← ApproximateInverse((λi, ui)i=1,...,k)√
Σ̂t ← ApproximateSqrt((λi, ui)i=1,...,k)

(ψ
(i)
t )i=1,...,p ← KalmanUpdate((ψ

(i)
t )i=1,...,p, Σ̂

−1
t ,

√
Σ̂t) . Update using Eq. (3)



Section 3

Sequential Vs All-at-once: Experimental Comparison



Experimental Testbed

Compare seq and aao EnSRF on two offline data assimilation problems:

1. Gaussian process regression problem (controlled environment).

2. Paleoclimate reconstruction problem (real data).

Performances of the assimilation schemes compared using:

• RMSE on reconstruction using updated mean.
• Reduction of error skill score [ME89].

I widely used in climatology
I aggregated over time
I only considers point prediction

• Energy score multivariate scoring rule [GSG+08].
I proper scoring rule [GR07] for probabilitsic multivariate forecasts
I considers full updated ensemble



GP Regression Task
Ground truth sampled from a Matérn GP Z ∼ Gp(0, kν=3/2,λ=0.1) with
unit variance on unit square [0, 1]2.

Figure: Example of ground truth sampled from the GP model.

• Starting ensemble sampled from model (well-specified).

• Assimilate data at 500 randomly chosen locations (σε = 0.01).

• Localize using kν=3/2,λ=0.2 (undersmoothing).

Resample ground truth and repeat 50 times.



(a) RMSE (b) RE skill score (median)

Figure: Comparison of the distributions of the RMSE and RE score.

Figure: Comparison of the enery score for the different assimilation methods.



Ordering Dependency

It is well-known in the community that results of localized and sequential
EnSRF depend on observations ordering.

(a) RMSE (b) Energy score (c) RE skill score

Figure: Distributions of acuracy metrics for different observation orderings (sequential).

Dependence on observation ordering can have effect of up to 3-5%.

• First study of ordering dependency since small (n = 40) study of
[Ner15].



Climate Reconstruction Problem

Task
Reconstruct state-of-the art climatology over the 1960-1980 period by
blending sparse station data with climate simulations that include
known external forcings (solar irradiance, volcanic activity, greenhouse
gas concentrations, ...).

(a) Station data (b) Prior mean

(c) Reference



Figure: Root mean square error of the reconstruction for different assimilation schemes.

Figure: RE skill scores for reconstruction of the reference dataset over the 1960-1980 period.



Figure: Energy score for reconstruction of the reference dataset over the 1960-1980 period.



Conclusion

Lazy, distributed arrays (implemented in Dask) allow for correct
implementation of sequential, localized ensemble square root Kalman
filter.

• Experiments show performance increase of order 5% compared to
traditional implementation in synthetic test cases.

• Beats sequential implementation on real climate reconstruction
problems.

• Scales to state spaces of sizes 105 − 106.

• Opens way to more complex estimation of large covariances.

Note: there are related works [Bop17, FB19], but not distributed, and without

detailed study.



Packages

Self-contained package available at
https://github.com/CedricTravelletti/DIESEL

https://github.com/CedricTravelletti/DIESEL
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Appendix



Noise Dependence (synthetic case)
As noted by [Ner15], wrong update equations in localized and sequential
EnSRF should have little effect when observation error is of same order as
model errors.

(a) RMSE (b) Energy score

(c) RE skill score

Figure: Evolution of accuracy metrics as a function of the observational noise standard deviation.


	Introduction: the Kalman Filter and its Variants
	Distributed, Non-Sequential Ensemble Kalman Filtering
	Sequential Vs All-at-once: Experimental Comparison
	Appendix
	Appendix


