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Section 1

Introduction: Inverse Problems and Stromboli Volcano
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Motivating Example: Stromboli Volcano

Want to learn the interior structure of the Stromboli volcano.

Only allowed to measure gravitational field on the surface
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Example Real-World Problem: Gravimetric Inversion

Want to recover interior density field ρ : D → R from surface gravity.

density observed gravity
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density observed gravity

Properties:

Linear operator data.

”Large-scale”: large 3 dimensional inversion grid.

Sequential assimilation of new data and optimal design of
experiment important in practice.
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Gravity field G(si, ρ) at site si generated by underground density ρ can be
written as linear operator:

yi = G(si, ρ) =

∫
D
ρ(x)g(x, si)dx

Traditionally solved by discretizing on a grid x = (x1, ..., xm).

Observation model

y = G(ρ(w1), ..., ρ(wr))
T =: GρW

.

Discretized observation operator G ∈ Rn×r for n observations.
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Gaussian Process Regression with Linear Operator Data

Assume ρ is a realization of a GP prior Z ∼ GP(m, k).

Data model is Y = GZW + ε.

Approximate ρ by posterior, conditional on the observed data Y = y.

Posterior is Gaussian, fully characterized by:

mean vector m̃ = (m̃x1
, ..., m̃xm

)T

covariance matrix K̃ =
(
k̃(xi, xj)

)
i,j=1,...,m

m̃ = m+KGT
(
GKGT + ∆

)−1
(y −Gm)

K̃ = K −KGT
(
GKGT + ∆

)−1
GK

Hard to implement in practice [TGL21]

Cedric Travelletti SIAM CSE 23 February 28, 2023 7 / 27



Section 2

Bayesian Inversion with Trends
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GP regression with trends known as universal kriging.

Ground truth Point data
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GP regression with trends known as universal kriging.

Ground truth Point data Fourier data

Goal: Extend to inverse problems to get ”universal inversion”.
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Trends allow inclusion of expert knowledge.

Model known geological stuctures such as:

Depth-dependence: resulting from way volcanoes aggregate mass.

Layers

Chimneys: higher densities in central lava conduit.

Fault lines: some volcanoes separate along fault through which high
density magma infiltrates.
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target = trend + fluctuations

Trends modeled by specifying basis functions:
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(a) depth-dependence
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(c) fault-line

Figure: Trend basis functions used in the experiments. Solid balls denote the locations of the
gravimetry observations (Stromboli dataset).
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Prior with trend

Assume prior is sum of trend + fluctuations described by Gaussian process

Zx =

p∑
i=1

βifi(x) + ηx,

η is a (centred) GP with kernel k,

basis functions fi : D → R,

trend coefficients β = (β1, ..., βp)
T .

Put a Gaussian prior on the trend coefficients

β ∼ N (µ,Σ) .
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Theorem

Conditionally on linear operator data Y = GZw + ε, the posterior of the
trend coefficients is Gaussian with mean and covariance given by:

E [β|y] = µ+ ΣF TWGTQ−1y (y −GFWµ)

Cov (β,β|y) = Σ− ΣF TWGTQ−1y GFW Σ,

assuming that the matrix Qy := G
(
FW ΣF TW +KWW

)
GT + σ2ε I is

invertible.
Conditionally on the data, the distribution of Z is also that of a GP, with
mean and covariance function given by:

mZ|y (x) = Fxµ+
(
FxΣF TW +KxW

)
GTQ−1y (y −GFWµ)

kZ|y
(
x,x′

)
= Kxx′ + FxΣF Tx′ −

(
FxΣF TW +KxW

)
GTQ−1y G(

FW ΣF Tx′ +KWx′
)
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Volcano Inversion with Trend

Inversion with trends gives consistent results (data fit within noise std).
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Figure: Posterior mean for the various trend models (Stromboli data).

But gives rise to new questions.
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Universal Inversion brings new challenges:

Questions
1 Can we compare the performance of different trend models?

2 How can we ”rank” different trend models? (penalize for complexity)

3 Can we perform measurements to ”optimally” discriminate models?
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Cross-Validation: Leave-One-Out

Idea

Given a data model Y = GZW and observed value y:
1 Remove one data point yi.

2 Fit model on remaining data y(−i).

3 Compute mean of fitted model Ẑ(−i) := E[Z|Y (−i) = y(−i)]

4 Predict missing data using mean, compute residual ei := yi−GẐ(−i)
W .

∑n
i=1 ||yi −GẐ

(−i)
W ||2 gives measure of model generalisation error.
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Leave-One Out (LOO) Cross-Validation on Stromboli

Gravimetric observations highly correlated
=⇒ LOO not informative.
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Beyond LOO: Leave-k-out

Can also consider subsets of size k: separate data in two batches:

y = (yi,y−i) ,

where yi has size k.

Want to compute residual when we predict yi using y−i

ei := yi −GẐ
(−i)
W
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Problems

Have to recompute full posterior at each CV pass.

Full leave-k-out infeasible (combinatorial explosion).

Need to select ”representative” subsets.

Need efficient formulae for computing residuals.

Cedric Travelletti SIAM CSE 23 February 28, 2023 20 / 27



Fast k-fold Cross-Validation Formulae

By generalizing [GS] all the information we need is contained in the
augmented matrix:

K̃ =

(
GKWWGT GFW

F TWGT 0

)
.

We partition it as:

K̃ =

(
K̃ii K̃i−i

K̃−ii K̃−i−i

)
=

 Gi•KWWGT•i Gi•KWWGT•−i Gi•FW

G−i•KWWGT•i G−i•KWWGT•−i G−i•FW

F TWGT•i F TWG•−i 0

 ,

where K̃ii := Gi•KWWGT
•i.

CV residuals can the be computed by extracting subblocks of the inverse.
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Fast k-fold Cross-Validation Formulae

Residuals can be computed by extracting and inverting upper left block of
the inverse:

ei =
(
K̃−1ii

)−1 (
K̃−1 [:, 1 : n]y

)
i
,

where K̃−1ii denotes the ii sub-block of K̃−1 and y has dimension n.

Drasting computational savings by avoiding recomputation of full
posterior.
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Application: k-fold CV to detect trends in Stromboli

Instead of considering all data subsets of a given size, consider k different
subsets (folds).

Remove one fold and predict using remaining ones.

Choosing Folds

How can we choose the k subsets?

Start with spatial clustering (heuristic).

Figure: Folds from kMeans clustering, k = 10.
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K-fold Cross-Validation: Stromboli (experimental)

kMean CV favors fault line model.

Question?

Is this representative of generalisation error?
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Beyond CV: Distribution of the Residuals

Can consider the residuals as random variables

Ei := GiZW −GiẐ
(−i)
W ,

where Ẑ(−i) is the UK predictor based on evaluation of G−iZ.

Theorem

(under the model) The residuals are jointly Gaussian distributed, centred
and with covariance

Cov (Ei, Ej) =
(
K̃−1ii

)−1
K̃−1ij

(
K̃−1jj

)−1
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What Next?

How can we leverage knowledge of theoretical distribution of residuals?

Choose folds to mimick generalisation error?

Figure: Theoretical CV variances (constant trend).

Gaussian hypothesis too ”smooth” (few gravimetric observations kill all
variance).
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