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Section 1

Introduction: Inverse Problems and Stromboli Volcano
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Motivating Example: Stromboli Volcano

Want to learn the interior structure of the Stromboli volcano.

@ Only allowed to measure gravitational field on the surface
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Example Real-World Problem: Gravimetric Inversion

Want to recover interior density field p : D — R from surface gravity.

density observed gravity
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density observed gravity

Properties:
o Linear operator data.
@ "Large-scale”: large 3 dimensional inversion grid.

@ Sequential assimilation of new data and optimal design of
experiment important in practice.
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Gravity field G(s;, p) at site s; generated by underground density p can be
written as linear operator:

yi = Gsirp) = /D p(2)g(x, 5:)dz
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Gravity field G(s;, p) at site s; generated by underground density p can be
written as linear operator:

b= Glsip) = [ plalgle.sids
D
e Traditionally solved by discretizing on a grid @ = (x1, ..., Zm).
@ Observation model

Yy = G(P(wl)v ""p(w?“))T =: Gpw

@ Discretized observation operator G € R™*" for n observations.
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Gaussian Process Regression with Linear Operator Data

Assume p is a realization of a GP prior Z ~ GP(m, k).

@ Data model isY = GZw + €.

@ Approximate p by posterior, conditional on the observed data Y = y.

@ Posterior is Gaussian, fully characterized by:
e mean vector 1 = (Mg, , ..., My, )T

e covariance matrix K = (l;:(:ci,acj))

ij=1,....m

m=m+KG" (GKG" +A)' (y — Gm)

K=K-KG" (GKG" + A)" GK

Hard to implement in practice [TGL21]
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Section 2

Bayesian Inversion with Trends
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GP regression with trends known as universal kriging.
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GP regression with trends known as universal kriging.
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Goal: Extend to inverse problems to get
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Trends allow inclusion of expert knowledge. J

Model known geological stuctures such as:

Depth-dependence: resulting from way volcanoes aggregate mass.
o Layers

o Chimneys: higher densities in central lava conduit.

o

Fault lines: some volcanoes separate along fault through which high
density magma infiltrates.
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target = trend + fluctuations J

Trends modeled by specifying basis functions:
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(a) depth-dependence (b) chimney (c) fault-line

Figure: Trend basis functions used in the experiments. Solid balls denote the locations of the
gravimetry observations (Stromboli dataset).
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Prior with trend

Assume prior is sum of trend + fluctuations described by Gaussian process

p
Zp =Y Bifi(x) + e,
i=1

e 7 is a (centred) GP with kernel k,
@ basis functions f; : D — R,
e trend coefficients B = (831, ..., Bp) L.

Put a Gaussian prior on the trend coefficients

B~N(pX).
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Condlitionally on linear operator data’Y = G Z,, + €, the posterior of the
trend coefficients is Gaussian with mean and covariance given by:
E[Bly] = p+EFRGT Q" (y — GFwp)
Cov (B,8ly) =% — SFy G Q' GFw?,

assuming that the matrix QQy := G (FWEF‘:,FV + KWW) EOS 052[ is
invertible.

Condlitionally on the data, the distribution of Z is also that of a GP, with
mean and covariance function given by:
mzly (x) = Fop + (FeXFy + Kow) GTQ," (y — GFwp)
kziy (2,@") = Kpor + FoXFy — (FoSFyy + Kow) GTQ,'G
(FwEFL + Kwa)

Cedric Travelletti SIAM CSE 23 February 28, 2023 14 /27



Volcano Inversion with Trend

Inversion with trends gives consistent results (data fit within noise std).
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Figure: Posterior mean for the various trend models (Stromboli data).

But gives rise to new questions.
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Universal Inversion brings new challenges:

@ Can we compare the performance of different trend models?

@ How can we "rank” different trend models? (penalize for complexity)

© Can we perform measurements to "optimally” discriminate models?
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Cross-Validation: Leave-One-Out

Given a data model Y = GZyw and observed value y:
© Remove one data point y;.

@ Fit model on remaining data y(~9.

@ Compute mean of fitted model Z(-%) := E[Z|Y (-9

@ Predict missing data using mean, compute residual e; := y; — GZ&,‘_,Z).)

Yoy — GZ‘(,;,I)H2 gives measure of model generalisation error.
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Leave-One Out (LOO) Cross-Validation on Stromboli
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Leave-One Out (LOO) Cross-Validation on Stromboli

Leave-one-out residual (constant
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Gravimetric observations highly correlated
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Beyond LOQ: Leave-k-out

Can also consider subsets of size k: separate data in two batches:

Y= (Yi,Y—i),

where y; has size k.

Want to compute residual when we predict y; using y_;

€; ‘=Y; — GZA‘(};’L)
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Problems

e Have to recompute full posterior at each CV pass.
o Full leave-k-out infeasible (combinatorial explosion).

o Need to select "representative” subsets.

o Need efficient formulae for computing residuals.
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Fast k-fold Cross-Validation Formulae

By generalizing [GS] all the information we need is contained in the
augmented matrix:

i — (GEwwG" GFw
S\ FLGT 0o )’

We partition it as:

~ Koo Ko GieKwwGl;,  GiKwwG._; GiFw
= (15 @) = |G akwwdh GlukwwGly Gluny
K 4 K i FLGT, FEGas 0
[ 1) o—

where f(“ = Gz.waGz;

CV residuals can the be computed by extracting subblocks of the inverse.
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Fast k-fold Cross-Validation Formulae

Residuals can be computed by extracting and inverting upper left block of
the inverse:

e; = (KZ-I>_1 (R_l [,1:n] y)i,

where IN(i_z.l denotes the ¢ sub-block of K~ and y has dimension n.

Drasting computational savings by avoiding recomputation of full
posterior.
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Application: k-fold CV to detect trends in Stromboli

Instead of considering all data subsets of a given size, consider k different
subsets (folds).

@ Remove one fold and predict using remaining ones.

Choosing Folds
How can we choose the k subsets?

e Start with spatial clustering (heuristic).

Figure: Folds from kMeans clustering, & = 10.
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K-fold Cross-Validation: Stromboli (experimental)

kMean CV favors fault line model.
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k-fold rmse: 2.905 [mGal] k-fold rmse: 2.041 [mGal] k-fold rmse: 1.771 [mGal]

Is this representative of generalisation error?
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Beyond CV: Distribution of the Residuals

Can consider the residuals as random variables
. _ (=9
E; .= GiZw — GiZy, ",

where Z(=9 is the UK predictor based on evaluation of G_;Z.

(under the model) The residuals are jointly Gaussian distributed, centred
and with covariance
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What Next?

How can we leverage knowledge of theoretical distribution of residuals?

Choose folds to mimick generalisation error? )
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Figure: Theoretical CV variances (constant trend).

Gaussian hypothesis too "smooth” (few gravimetric observations kill all
variance).
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