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Section 1

Introduction
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Problem Setup

Want to learn an unknown function

f : D → R
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Problem Setup

Want to learn an unknown function

f : D → R

given some data f(xi).
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Gaussian Process Regression

Can be done in a Bayesian way by assuming f is a realization of a
Gaussian process prior Z ∼ Gp(m0, k).

Figure: Posterior mean (blue).

Approximate f by posterior of Z conditional on the data Zxi = f(xi).
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What if do not have point data f(xi) but more general data:

yi = `i(f)

for some linear functionals `i.

Examples

Derivative observations `i(f) = f ′(xi)

Integral data: `(f) =
∫
D f(x)dx

Fourier coefficients `k(f) =
∫
D e
−2πikxf(x)dx

Kernel operators `s(f) =
∫
D f(x)g(x, s)dx, for some function g.
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Linear operator data arise everywhere in science:

Remote Sensing

Observe reflected
light

Recover land
properties

Tomography

Observe
transmitted X-Ray
intensity

Recover material
properties

Geoscience

Observe
gravitational field

Recover
undergroud
properties

Broadly known as (linear) Inverse Problems.
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Inverse Problems and GP

GPs can easily handle linear operator data.

Figure: Posterior mean (red) for Fourier data

`k(f) =

∫
D
e−2πikxf(x)dx, k = 1, 5, 7, 10

.

=⇒ can use GP priors in inverse problems (Bayesian Inversion)
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Problem for today:

Can we scale the GP + linear operator framework to
”real-world” problems?
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Example Real-World Problem: Gravimetric Inversion

Recover interior of Stromboli volcano from surface gravity.

density observed gravity
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density observed gravity

Properties:

Linear operator data.

”Large-scale”: large 3 dimensional inversion grid.

Sequential assimilation of new data and optimal design of
experiment important in practice.
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Gravity field G(si, ρ) at site si generated by underground density ρ can be
written as linear operator:

yi = G(si, ρ) =

∫
D
ρ(x)g(x, si)dx

Traditionally solved by discretizing on a grid x = (x1, ..., xm).

Observation model

y = G(ρ(x1), ..., ρ(xm))T

.

Discretized observation operator G ∈ Rn×m for n observations.

Posterior described by:

mean vector m̃ = (m̃x1
, ..., m̃xm

)T

covariance matrix K̃ =
(
k̃(xi, xj)

)
i,j=1,...,m
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The Problem with Large, Sequential Bayesian Inversion

m̃ = m0 +KGT
(
GKGT + τ2I

)−1
(y −Gm0)

K̃ = K −KGT
(
GKGT + τ2I

)−1
GK

Linear operator data (can) involve all grid points at the same time.
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Figure: Grid and matrices size vs resolution on Stromboli example.
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Section 2

Implicit Covariance Representation for Large-Scale
Inversion
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Solving practical difficulties of Bayesian inversion

Covariance matrix too big? =⇒ Don’t store it, nor build it.

Implicit Representation

Posterior covariance information may be extracted via products with tall
and thin matrices:

K̃A, A ∈ Rm×p, p� m

=⇒ Only need to maintain a multiplication routine.

Travelletti, C., Ginsbourger, D. and Linde, N. (2022). Uncertainty Quantification and

Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors

https://arxiv.org/abs/2109.03457 , to appear in SIAM JUQ.
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Implicit Representation: Advantages

Drastically reduced memory footprint.

Figure: Memory footprint of posterior covariance vs grid size.

Fast inclusion of new data.

Update done in small chunks =⇒ can send to GPU.
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Inversion results (Matern 3/2 kernel), hyperparameters trained with MLE
on field data are in agreement with deterministirc inversion results.

Figure: Posterior mean [kg/m3]. Figure: Posterior mean [kg/m3].

Probabilistic model allows for uncertainty quantification
and active learning.
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Theoretical Justification

Rigorous introduction of such an implicit representation requires us to
understand which linear operators are allowed for the conditional law

to be well defined.

Language of disintegrations of measures provides rigorous formulation
of conditioning wrt. linear operators.

Observation operator has to be a bounded operator into a separable
Banach space.

Need the GP to induce a Gaussian measure (valid in the usual
settings).

Travelletti, C. and Ginsbourger, D. (2022). Disintegration of Gaussian Measures for Sequential

Bayesian Learning with Linear Operator Data arxiv: 2207.13581 (2022), submitted to EJS.
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Section 3

Including known Trends
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GP regression with trends known as universal kriging.

Ground truth Point data
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GP regression with trends known as universal kriging.

Ground truth Point data Fourier data

Goal: Extend to inverse problems to get ”universal inversion”.
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Trends allow inclusion of expert knowledge.

Model known geological stuctures such as:

Layers

Chimneys

Depth-dependence

...

target = trend + fluctuations
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Trends modeled by specifying basis functions:

Figure: Basis functions (density at sea level [kg/m3]).

Figure: Structural boundaries of Stromboli Island [LBR+14].
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Trends modeled by specifying basis functions:

Figure: Basis functions (density at sea level [kg/m3]).

Figure: Structural boundaries of Stromboli Island [LBR+14].
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Prior with trend

Assume prior is sum of trend + fluctuations described by Gaussian process

Zx =

p∑
i=1

βifi(x) + ηx,

η is a (centred) GP with kernel k,

basis functions fi : D → R,

trend coefficients β = (β1, ..., βp)
T .

Put a Gaussian prior on the trend coefficients

β ∼ N (µ,Σ) .
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Theorem

Conditionally on linear operator data Y = GZw + ε, the posterior of the
trend coefficients is Gaussian with mean and covariance given by:

E [β|y] = µ+ ΣFTwGTQ−1y (y −GFwµ)

Cov (β,β|y) = Σ− ΣFTwGTQ−1y GFwΣ,

assuming that the matrix Qy := G
(
FwΣFTw +Kww

)
GT + σ2ε I is

invertible.
Conditionally on the data, the distribution of Z is also that of a GP, with
mean and covariance function given by:

mZ|y (x) = Fxµ+
(
FxΣFTw +Kxw

)
GTQ−1y (y −GFwµ)

kZ|y
(
x,x′

)
= Kxx′ + FxΣFTx′ −

(
FxΣFTw +Kxw

)
GTQ−1y G(

FwΣFTx′ +Kwx′
)
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Volcano Inversion with Trend

Inversion with trends gives consistent results (data fit within noise std).

Figure: Posterior mean at -100 m [kg/m3]

But gives rise to new questions.
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Universal Inversion brings new challenges:

Questions
1 Can we compare the performance of different trend models?

2 How can we ”rank” different trend models? (penalize for complexity)

3 Can we perform measurements to ”optimally” discriminate models?
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Cross-Validation

Idea

Given a data vector Y = GZw + ε:
1 Remove one data point Yi.

2 Fit model on remaining data Y (−i).

3 Use fitted model to predict missing data, compute residual Ŷ
(−i)
i −Yi.

Residuals
∑n

i=1 ||Ŷ
(−i)
i − Yi||2 give measure of model generalisation error.

Cedric Travelletti (UniBe) Cornell Oct. 2022 October 21, 2022 30 / 52



Cross-Validation (leave-k-out)

Can also consider subsets of size k: separate data in two batches:

Y = (Yi,Y−i) ,

where Yi has size k.

Want to compute residual when we predict Yi using Y−i

Yi − Ŷ
(−i)
i
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Problem

CV is computationally expensive (have to re-fit model at every pass).
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Fast k-fold Cross-Validation Formulae

By generalizing [GS] all the information we need is contained in the
augmented matrix:

K̃ =

(
GKGT GF
F TGT 0

)
.

We partition it as:

K̃ =

(
K̃ii K̃i−i

K̃−ii K̃−i−i

)
=

 Gi•KG
T
•i Gi•KG

T
•−i Gi•F

G−i•KG
T
•i G−i•KG

T
•−i G−i•F

F TGT•i F TG•−i 0

 .

CV residuals can the be computed by extracting subblocks of the inverse.

Cedric Travelletti (UniBe) Cornell Oct. 2022 October 21, 2022 33 / 52



Fast k-fold Cross-Validation Formulae

Upper left block of the inverse give us (inverse) covariance of residuals:

K̃−1ii = Cov
(
Ŷ

(−i)
i , Ŷ

(−i)
i

)−1
,

where K̃−1ii denotes the ii sub-block of K̃−1. Can get the residuals in the
same way:

K̃−1ii

(
K̃−1 [:, 1 : n]Y

)
i

= Yi − Ŷ
(−i)
i .
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Leave-One Out (LOO) Cross-Validation on Stromboli

Probems

Gravimetric observations highly correlated =⇒ LOO not informative.

Full leave-k-out infeasible (combinatorial explosion).

Need to select ”representative” subsets.
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K-fold Cross-Validation (experimental)

Instead of considering all data subsets of a given size, consider k different
subsets (folds).

Remove one fold and predict using remaining ones.

Choosing Folds

How can we choose the k subsets?

Spatial clustering (heuristic).

Data collection paths (heuristic).

Other approach?

Figure: Folds from kMeans clustering, k = 10.
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K-fold Cross-Validation: Stromboli (experimental)

kMean CV favors fault line model.

Question?

Is this representative of generalisation error?

Cedric Travelletti (UniBe) Cornell Oct. 2022 October 21, 2022 37 / 52



K-fold Cross-Validation: Stromboli (experimental), contd.

Figure: Histogram of k-fold residuals (aggregated across folds).
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Open Questions and Future work

1 Principled model selection (penalize complexity).

2 Approach for choosing folds.

3 Active learning: choose next observations to optimally discriminate
models.
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Section 4

Optimal Design for Sequential Uncertainty Reduction
on Excursion Sets
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Excursion Set Estimation

Want to recover high-density regions.

Correspond to geological features of interest.

Propose adaptive data collection plan.

(a) density (b) observation sites (static design) (c) excursion set
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Stepwise Uncertainty Reduction and Random Sets

Want to recover (true) excursion set Γtrue := {x ∈ D : ρ(x) > T}.

Sequential Uncertainty Reduction and Random Sets

Collect data G1, ..., Gn.

Compute posterior.

Approximate through random set Γ(n) := {x ∈ D : Z
(n)
x > T}, where

Z(n) distributed according to posterior.

Coverage Function

pn :D → [0, 1]

pn(x) := P
[
x ∈ Γ(n)

]
.
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Stepwise Uncertainty Reduction (SUR)

SUR Framework

Select observations by sequentially maximizing an uncertainty reduction
criterion.

(weighted) IVR criterion

wIVRn(s) : =

∫
D

(
K(n)
xx −K(n+1)

xx [Gs]
)
pn(x)dx

Where K
(n+1)
xx denotes the conditional covariance after including a

gravimetric observation Gs at location s.

Future variance K(n+1) does not depend on observations.
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Experiments

Train GP model on field campaign data.

Generate synthetic ground truths by sampling the GP.

Evaluate criterion in-silico.

Figure: True density and
excursion set (generated from

model).

Figure: Proposed data
collection plan, wIVR

long-range strategy, total
budget of 90 observations.

Figure: Estimated excursion set
(Vorob’ev Expectation) and

coverage function.
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Results

Get data collection plan by myopic optimization of the criterion.

Figure: Excursion set and proposed data collection plan (tIMSE).
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Results (contd.)

Compare proposed design to static one and to space-filling design.

Able to reach close-to-minimal uncertainty after 250 observations.

(a) True positives

Figure: Evolution of true positives as a function of the number of observations.
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UQ on Excursion Volume

Sample from posterior volume distribution on 5 different ground truths.

Figure: Prior (left) and empirical posterior (right) distribution (after 450 observations) of the
excursion volume for each ground truth. True volumes are denoted by vertical lines.

Demonstrate uncertainty reduction and peaking around true volume.
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Section 5

Towards more realistic Path Planning
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Myopic optimization of reward-only criterion falls short of capturing
reality.
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Shortcomings

Inacessible regions (Sciara del fuoco).

Locations outside hiking trails difficult to reach.

Some regions only accessible by boat.

And global constraint:

Have to be back to base at end of the day.
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Cost Modelling

Develop cost map of Stromboli (work in progress).

How to compare cost (time spent) to reward (reduction of
uncertainty).
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Non-Myopic Optimization

Myopic optimization can get us ”stuck” in bad regions.

=⇒ Need to consider ”lookahead criterion”.

Possible Solution: Rollout

wIVRn+k(s) : =

∫
D

(
K(n)
xx −K(n+k)

xx [Gs]
)
pn(x)dx

Future variance independent of observations, future excursion probability
approximated by current one.
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Image Sources

All images in the public domain.
https://commons.wikimedia.org/wiki/File:Gravity anomalies on Earth.jpg

https://www.nasa.gov/audience/foreducators/robotics/imagegallery/r landsat.jpg.html

https://en.wikipedia.org/wiki/Brain positron emission tomography#/media/File:PET Normal brain.jpg
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(a) False positives

Cedric Travelletti (UniBe) Cornell Oct. 2022 October 21, 2022 3 / 3


	Introduction
	Implicit Covariance Representation for Large-Scale Inversion
	Including known Trends
	Optimal Design for Sequential Uncertainty Reduction on Excursion Sets
	Towards more realistic Path Planning
	Appendix

