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Motivating Example: Stromboli Volcano

Want to learn the interior structure of the Stromboli volcano.

Only allowed to measure gravitational field on the surface

Question

Where should I collect data to get the best possible reconstruction?
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Section 1

Problem Setup
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Problem Setup

Want to recover: unknown density field ρ : D → R
measurement sites s1, ..., sn ∈ S on the surface

Available data: surface gravity field {Gsi [ρ]}i=1,...,n.

Measurement (forward) operator

Gsi [ρ] =

∫
D
ρ(x)

x(3) − s(3)i

‖x− si‖3
dx
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Solve problem in a Bayesian way by putting a GP prior on subsurface
density field.

Available observations (gravity) are linear forms of the field.

Use conditional distribution to approximate unknown field ρ.
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GP posterior in Inverse Problems

GPs can handle linear operator data: yi = Gi (f) =
∫
D f(x)dλi(x), where

Gi : C (D)→ R is a linear form.

mn (x) = m (x) +KxGnK
−1
GnGn

(yn −Gnm·)

kn(x, x′) = k(x, x′)−KxGnK
−1
GnGn

KT
x′Gn

KxGn =

(∫
D
k (x, y) dλi (y)

)
i=1,...,n

KGnGn =

(∫
D

∫
D
k (y, z) dλi (y) dλj (z)

)
i,j=1,...,n
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(Discrete) Bayesian Inversion

Discretize inversion domain into cubic cells of fixed side length.

discretize GP prior on m cells: D = {x1, ..., xm} .

Prior mean µ0 = (µ(xi))i=1,...,m, covariance matrix Kij = k(xi, xj).

Posterior is gaussian with mean vector and covariance matrix

µ̃ = µ0 +KGT
(
GKGT + τ2I

)−1(
y −Gµ0

)
K̃ = K −KGT

(
GKGT + τ2I

)−1
GK

Get posterior by updating mean vector and covariance matrix.
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Challenges and Limitations

Conditioning equations involve matrices that are
impossible to store for (moderately) fine-grained inversion.

µ̃ = µ0 +KGT
(
GKGT + τ2I

)−1(
y −Gµ0

)
K̃ = K −KGT

(
GKGT + τ2I

)−1
GK

Covariance matrix quadratic in number of inversion cells (O(m2)
storage).

Forward operator is dense: each datapoint influenced by all cells in
discretization =⇒ No Sparsity.

SPECIFIC TO INVERSE PROBLEMS.

Impossible to store covariance matrices for real-world sized problems.
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Challenges and Limitations: Stromboli Memory Needs

µ̃ = µ0 +KGT
(
GKGT + τ2I

)−1(
y −Gµ0

)
K̃ = K −KGT

(
GKGT + τ2I

)−1

GK

Matrix # Elements Storage

K 2.9 ∗ 1010 115 GB

KG, G 9.2 ∗ 107 369 MB

(· · · )−1 2.9 ∗ 105 1.2 MB

µ 1.7 ∗ 105 0.7 MB

Figure: Grid and matrices size vs resolution on
Stromboli example.

Compared to GP-regression, different dimensions at play.
(specific to inversion).
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Summary of Challenges for large GP-based Inversion

Larger-than-memory covariance matrices

Difficult to exploit sparsity when observation operators are dense
(inversion-specific).

Sequential updates impossible (cannot store intermediate
covariances).
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Section 2

Solving the Memory Bottleneck
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Solving the Memory Bottleneck

Covariance matrix too big? =⇒ Don’t store it.

Observation

Posterior covariance information may be extracted via products with tall
and thin matrices:

K̃A, A ∈ Rm×p, p� m

=⇒ Only need to maintain a multiplication routine.

Introduce an (almost-) matrix-free implicit representation of the
posterior covariance matrix.
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Implicit Representation: Sequential Setting

Consider sequential data assimilation setting.

Measurements G1, ..., Gn.

Covariance after inclusion of first n batches: K(n).

Do not compute K(n), only maintain a right-multiplication routine.

CovMuln : A 7→ K(n)A

Update this implicit representation at every new data inclusion.

K(n)A = K(0)A−
n∑

i=1

K̄iR
−1
i K̄T

i A

K̄i : = K(i−1)GT
i ,

R−1i : =
(
GiK

(i−1)GT
i + τ2I

)−1
.
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Implicit Representation: Sequential Setting (contd.)

K(n)A = K(0)A−
n∑

i=1

K̄iR
−1
i K̄T

i A

K̄i : = K(i−1)GT
i ,

R−1i : =
(
GiK

(i−1)GT
i + τ2I

)−1
.

Only need to store low rank intermediate matrices:

m× dn matrix K(i−1)GT
i

dn × dn matrix
(
GiK

(i−1)GT
i + τ2I

)−1

Only involves right-multiplication with previous stage covariance.

Need to be able to compute product with prior K(0) (easy if comes
from kernel).
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Implicit Representation: Advantages

Drastically reduced memory footprint.

Figure: Memory footprint of posterior covariance vs grid size.

Fast inclusion of new data.

Update done in small chunks =⇒ can send to GPU.
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Section 3

Optimal Design
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Example Application: Excursion Set Estimation

Want to recover high-density regions.

Correspond to geological features of interest.

Propose adaptive data collection plan.

(a) density
(b) observation sites (static
design)

(c) excursion set
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Stepwise Uncertainty Reduction and Random Sets

Want to recover (true) excursion set Γtrue := {x ∈ D : ρ(x) > T}.

Sequential Uncertainty Reduction and Random Sets

Collect data G1, ..., Gn.

Compute posterior.

Approximate through random set Γ(n) := {x ∈ D : Z
(n)
x > T}, where

Z(n) distributed according to posterior.

Coverage Function

pn :D → [0, 1]

pn(x) := P
[
x ∈ Γ(n)

]
.
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Weighted IVR Criterion

Select observations by sequentially optimizing an uncertainty reduction
criterion (SUR framework).

(weighted) IVR criterion

IVR(s) :=
∫
D

(
Varn

[
Z

(n)
x

]
−Varn

[
Z

(n)
x | G(s)

])
pn(x)dx

Where n data ingestion steps have already been performed and variances
and excursion probabilities are computed under the current (stage n)
conditional law of the field.

Does not depend on next observed data.
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IVR and Implicit Update Framework

IVR(G) ∼=
m∑
i=1

(
KGT

(
GKGT + τ2I

)−1
GK

)
ii

Computation of IVR without update formulae requires inverting
concatenated dataset.

Update formulae allow to compute only contribution of new
observation G.

Cost scales cubically in the size of the new observations (comparted
to cubic in dataset size for direct approach).

Cedric Travelletti (UniBe) SIAM UQ 22 April 13, 2022 20 / 26



Experiments

Train GP on field campaign data.
Sample ’realistic’ volcanoes from model.
Assess criterion in-silico using artificially sampled ground truths.

Figure: Excursion set and proposed data collection plan (tIMSE).
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Diagnostics: Limiting Distribution

Since implicit representation allows fast inclusion of new datapoints, can
study the limiting distribution.

Limiting Distribution

Posterior distribution after data collected at all accessible locations.

Gives sense of minimal residual uncertainty (inherent to this type of
data).
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Results

(a) True positives (b) False positives

Figure: Evolution of true and false positives for the small scenario as a function of
the number of observations.
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UQ on Excursion Volume

Sample from posterior volume distribution on 5 different ground truths.

Figure: Prior (left) and empirical posterior (right) distribution (after 450
observations) of the excursion volume for each ground truth. True volumes are
denoted by vertical lines.

Demonstrate uncertainty reduction and peaking around true volume.
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Future Directions

Infer trends (extend to universal kriging type inversion).

Conservative uncertainty reduction strategies.

Cost-aware path planning.
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The End
Travelletti, C., Ginsbourger, D., Linde, N. (2021). Uncertainty quantification and experimental

design for large-scale linear inverse problems under gaussian process priors. arXiv preprint

arXiv:2109.03457.
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