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Excursion Set Estimation

Goal

Estimate excursion set

Γ∗ : = {x ∈ D : f(x) > T} ,

where f : D → R is some unknown target function.

(a) Target function f and true excursion set.



Bayesian Excursion Set Estimation

Bayesian approach: f is a realization of a GP (Zx)x∈D.

• Use posterior to approximate true Γ∗.

(a) Target function f , GP posterior, excursion set and plugin estimate.



Extending to Inverse Problems

GPs can also handle linear operator data:
yi = Gi (f) =

∫
D f(x)dλi(x), where Gi : C (D)→ R is a linear

form.
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Example 1: Estimating High-Density Regions inside
a Volcano



Example: Stromboli Volcano
Want to learn the interior structure of the Stromboli volcano.

• Only allowed to measure gravitational field on the surface

Question

Where should I collect data to get the best possible reconstruction?



Problem Setup
• Want to recover: unknown density field ρ : D → R
• measurement sites s1, . . . , sn ∈ S on the surface
• Available data: surface gravity field {Gsi [ρ]}i=1,...,n.

Measurement (forward) operator

Gsi [ρ] =

∫
D
ρ(x)

x(3) − s(3)
i

‖x− si‖3
dx



Excursion Set Estimation

• Want to recover high-density regions.

• Correspond to geological features of interest.

• Propose adaptive data collection plan.

(a) density
(b) observation sites
(static design)

(c) excursion set



Stepwise Uncertainty Reduction

Want to learn high-density region: Γ∗ := {x ∈ D : ρ (x) > T}
• Select observations by sequentially optimizing an uncertainty

reduction criterion (SUR framework).

targeted IMSE

J tIMSE
n (s) = En

[∫
D
kn+1(u, u)pn,T (u)µ(du)|Gn+1 = Gs

]

• Future variance kn+1(u, u) does not depend on observations.



Experiments

• Train GP model on field campaign data.

• Generate synthetic ground truths by sampling the GP.

• Evaluate criterion in-silico.

Figure: True density and
excursion set (generated
from model).

Figure: Proposed data
collection plan, wIVR
long-range strategy,
total budget of 90
observations.

Figure: Estimated
excursion set (Vorob’ev
Expectation) and
coverage function.



Results

Get data collection plan by myopic optimization of the criterion.

Figure: Excursion set and proposed data collection plan (tIMSE).



Results (contd.)
• Compare proposed design to static one and to space-filling

design.
• Able to reach close-to-minimal uncertainty after 250

observations.

(a) True positives (b) False positives

Figure: Evolution of true and false positives as a function of the number
of observations.



UQ on Excursion Volume

Sample from posterior volume distribution on 5 different ground
truths.

Figure: Prior (left) and empirical posterior (right) distribution (after 450
observations) of the excursion volume for each ground truth. True
volumes are denoted by vertical lines.

Demonstrate uncertainty reduction and peaking around true
volume.



Example 2: River Plume Mapping



Case Study Mapping a River Plume in a Fjord

Frontal zone where river (cold freshwater) enters ocean (warm,
salty water) is home to many important biological processes.

(a) Nidelva river entering Trondheim Fjord.

Can we map the interface?

Photograph: courtesy of J. Eidsvik



Mapping the Interface of a River Plume

River differs from ocean by its temperature and salinity content.

Ideally: Collect temperature and salinity data only
along the interface.

But ...

• Boundary evolves (tides, wind, river discharge variations, ...).

• Need for adaptive data collection plans.



Autonomous Data Collection

Collect temperature / salinity data using an autonomous
submarine (AUV).

frontal zone frontal zone

River run-off

Coastal water

• AUV uses model of river plume to guide data collection
process.

Use Multivariate GP to model temperature-salinity
field.



Multivariate GP Model

• River plume differs from ocean water by its low temperature
and salinity.

• Model temperature and salinity as a bivariate random field.

Z := (ZT , ZS)T ∼ Gp (µ, k)

Ocean is then an Excursion Set

Γ∗ := {u ∈ D : ZT ≥ tT , ZS ≥ ts}

• As UAV gathers observations, GP model is updated by
co-kriging.

• Kriging-equations can be made form-invariant across all
dimensions of the output [FTE+21].



Multivariate GP Model (contd.)

Prior knowledge about river flow encoded in mean function of the
GRF.
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Spatial correlations and cross-correlation between tempearture and
salinity modeled by a separable covariance function

Cov (Zs,i, Zu,j) = k(s, u)γ(i, j), γ(i, j) =

{
σ2
l , i = j

γ0σiσj , i 6= j



Multivariate GP Model (contd.)
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Example Realisation

(a) Realisation of the GRF model. Excursion set in red, excursion of a single
component (temperature or salinity) in white.



Uncertainty Measures on ES
(Current) law of the field gives information about probable location
of excursion set Γ.

Coverage Function

p(u) = P (ZT,u ≥ tT , ZS,u ≥ ts)

(a) Realisation of excursion set from the GRF model (excursion set in red).
Excursion probability and Bernoulli variance conditional on data collected at
locations depicted by triangles.



Integrated Bernoulli Variance

Given excursion set Γ = {u ∈ D : ZT,u ≥ tT , ZS,u ≥ ts}, a useful
measure of uncertainty is the Integrated Bernoulli Variance

HΓ
n =

∫
D
pn (u) (1− pn (u)) dµ(u)

where P denotes the current law of the field.

• Sequential uncertainty reduction strategy by minimizing
expected future uncertainty JΓ

n (x) = En

[
HΓ

n+1|xn+1 = x
]
.

• Criterion can be computed analytically.

Fossum, T., O., Travelletti, C., Eidsvik, J., Ginsbourger, D. (2021). Learning

excursion sets of vector-valued Gaussian random fields for autonomous ocean

sampling. The Annals of Applied Statistics 15, no. 2.

https://arxiv.org/abs/2007.03722


Sequential Uncertainty Reduction (SUR) Strategy

At each step, choose next observations location so as to maximally
decrease expected Bernoulli variance (myopic).

(a) Expected Bernoulli Variance Reduction associated to data collection at a
given location (green triangle). Also shows EBV reduction associated to
observing a single component of the field.

xn+1 = argmin
x∈J

JΓ
n (x)



Simulation Study

Figure: Example run of myopic startegy. Excursion set in red. Locations
where only one component of the field is above threshold are shown in
pink. Radar displaying EIBV of neighbors at each step.
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