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Problem Overview

Want to recover the matter density field inside the Stromboli volcano:

ρ : D → R
from observations of the (vertical component of) the induced gravity field at points s1, ..., sn on

the surface:

Gsi [ρ] =
∫

D
ρ(x)x

(3) − s(3)

||x − si||3

Figure 1. Problem Overview: Underground mass density (simulated), vertical intensity of the generated gravity field

(arbitrary colorscale)..

We here restrict ourselves to continuous density fields. Available data may then be described as

an linear operator between Banach spaces G : C(D) → Rn (the forward operator). Our task is

then to recover the continuous scalar field ρ on D from the data

y = G [ρ] + ε

where ε ∼ N (0, τ2I) is some Gaussian-distributed noise. This is a so-called Inverse Problem.

Bayesian Inversion

Inversion may be performed in a Bayesian way by putting a prior on C(D) and using the posterior
to approximate ρ. In the following, let Z ∼ Gp(µ, k) denote a Gaussian Process on D with (almost

surely) continuous trajectories.

After discretization of the forward operator, posterior mean and covariance can be computed

analytically. Given a set of grid points W = (w1, ..., wm) in D, discretize the forward into an

n × m matrix G:

G [ρ] ≈ G (ρ(w1), ..., ρ(wm))T .

Then, given two sets of points X = (x1, ...xk)T and X ′ = (x′
1, ..., x′

l) in D and using KXX ′ to

denote the k × l matrix with elements k(xi, x′
j), the posterir mean and covariance are given by:

µ̃X = µX + KXW GT
(

GKW W GT + τ2I
)−1

(y − GµW )

K̃XX ′ = KXX ′ − KXW GT
(

GKW W GT + τ2I
)−1

GKT
X ′W .

Challenges

It turns out that the conditioning equations become intractablewhen the problem is discretized

on fine resolution grids. In the following, let X denote a set of m points used to discretize the

volcano, also let W = X .

Forward operator is an integral operator and hence involves all points of the discretization.

Typical discretization size for Stromboli volcano is into cubic cells of 50m side length. This

yields rougly m = 200k discretization points.

Formulae involve m × m matrices, which translate to hundreds of gigabytes of memory.

Intermediate matrix KW W and posterior covariance K̃XX become too large for storage .

Sequential Inversion

The problem gets even worse when data is assimilated in stages i = 1, ..., n, with Gi denoting

forward operator at data assimilation stage i and K(i) denoting posterior covariance at stage i.

Implicit Covariance Representation

Fast, sequential updating of the posterior is achieved by introducing an implicit representation

and chunking.

Chunking: Prior covariance matrix K(0) may be constructed on-demand (analytical formula

exists for each element). So products K(0)A can be computed in chunks by only constructing

bands of K(0).

Implicit Representation: Only maintain and update multiplication routine for the posterior

covariance. All computations either brought back to multiplication with the prior (which can

be performed by chunking) or reduced to multiplication with small matrices.

Multiplication routine for thin matrices A ∈ Rm×q, q � m is maintained at every stage (thin ≈
small enough so that resulting product can fit in memory).

CovMuln : A 7→ K(n)A.

Routine may then be updated iteratively thanks to:

Lemma

For any n ∈ N and any m × q matrix A:

K(n)A = K(0)A −
n∑

i=1
K̄iR

−1
i K̄T

i A,

with intermediate matrices K̄i and R−1
i defined as:

K̄i : = K(i−1)GT
i ,

R−1
i : =

(
GiK

(i−1)GT
i + τ2I

)−1
.

So multiplication routine at each stage may be defined by only storing low rank matrices at each

data acquisition stage.

Posterior Sampling

Our implicit representation integrates well with residual kriging to allow sampling from the pos-

terior on large grids.

Excursion Set Estimation

Goal: Estimate high density regions Γ∗ := {x ∈ D : ρ(x) ≥ T}.
Set Estimation: Posterior gives rise to a random set Γ := {x ∈ D : Z̃x ≥ T}, where Z̃ is any GP

distributed according to the posterior.

Can then use the excursion probability pΓ(x) := P [x ∈ Γ] to produce estimator (Vorob’ev expec-

tation):

Γ̂V := {x ∈ D : pΓ(x) ≥ αV }

where αV chosen such that Γ̂V has same volume as expected volume of Γ (computable).

Use Case: Sequential Design for Excursion Set Estimation

Sequential Design of Experiment: At stage n, goal is to choose next observation point sn+1 on
surface of volcano, using data available up to stage n in order to decrease uncertainty on our

estimate of Γ.
Can do this by maximizing weighted integrated variance reduction (wIVR) criterion:

wIVRn(s) =
∫

D

(
K

(n)
xx − K

(n+1)
xx [Gs]

)
pn(x)dx,

whereK(n+1) denotes the conditional covariance after including the observations described byGs

(this is independent of the observed realisation of the data) and pn denotes the coverage function

at stage n (according to the posterior at stage n).

Requires computation of (hypothetical) covariance matrices on full grid =⇒ too expansive for

traditional approaches, requires implicit representation.

Criterion optimized for single new observation point at each stage (myopic).

Candidate locations chosen among finite set (nearest neighbors from last stage, ...).

Results:

Run wIVR strategy on Stromboli volcano discretized at 50m resolution. Compare reconstruction

accuracy (using Vorob’ev expectation) for different strategies. Compare to best possible recon-

struction (infill) which corresponds to gathering data at each point of the (discretized) surface.

Figure 2. Comparison of excursion set reconstruction

quality for different strategies. Figure 3. Ground truth (with excursion set), Vorob’ev

estimate at end of wIVR strategy and locations visited by

the strategy (long steps and nearest neighbors).
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