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Motivating Example: Stromboli Volcano

Want to learn the interior structure of the Stromboli volcano.

Only allowed to measure gravitational field on the surface

Question

Where should I collect data to get the best possible reconstruction?
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Section 1

Problem Setup
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Problem Setup

Want to recover: unknown density field ρ : D → R
measurement sites s1, ..., sn ∈ S on the surface
Available data: surface gravity field {Gsi [ρ]}i=1,...,n.

Measurement (forward) operator

Gsi [ρ] =

∫
D
ρ(x)

x(3) − s(3)i

‖x− si‖3
dx
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Solve problem in a Bayesian way by putting a GP prior on subsurface
density field.

Available observations (gravity) are linear forms of the field.

Use conditional distribution to approximate unknown field ρ.
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(Discrete) Bayesian Inversion

Discretize inversion domain into cubic cells of fixed side length.

discretize GP prior on m cells: D = {x1, ..., xm} .

Prior mean µ0 = (µ(xi))i=1,...,m, covariance matrix Kij = k(xi, xj).

Posterior is gaussian with mean vector and covariance matrix

µ̃ = µ0 +KGT
(
GKGT + τ2I

)−1(
y −Gµ0

)
K̃ = K −KGT

(
GKGT + τ2I

)−1
GK

Get posterior by updating mean vector and covariance matrix.
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Challenges and Limitations

Conditioning equations involve matrices that are
impossible to store for (moderately) fine-grained inversion.

µ̃ = µ0 +KGT
(
GKGT + τ2I

)−1(
y −Gµ0

)
K̃ = K −KGT

(
GKGT + τ2I

)−1
GK

Covariance matrix quadratic in number of inversion cells (O(m2)
storage).

Forward operator is dense: each datapoint influenced by all cells in
discretization =⇒ No Sparsity.

SPECIFIC TO INVERSE PROBLEMS.

Impossible to store covariance matrices for real-world sized problems.
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Challenges and Limitations: Example on Stromboli Volcano

Discretize subsurface domain into cubic cells with 50m side length.
On typical inversion domain (up to -500m) this gives 170’000 cells.
Observations of gravity field at 543 locations (typical field campaign).

Figure: Topographic model used for
discretization.

Figure: Observation locations.
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Challenges and Limitations: Stromboli Memory Needs

µ̃ = µ0 +KGT
(
GKGT + τ2I

)−1(
y −Gµ0

)
K̃ = K −KGT

(
GKGT + τ2I

)−1

GK

Matrix # Elements Storage

K 2.9 ∗ 1010 115 GB

KG, G 9.2 ∗ 107 369 MB

(· · · )−1 2.9 ∗ 105 1.2 MB

µ 1.7 ∗ 105 0.7 MB

Figure: Grid and matrices size vs resolution on
Stromboli example.

Compared to GP-regression, different dimensions at play.
(specific to inversion).
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Summary of Challenges for large GP-based Inversion

Larger-than-memory covariance matrices

Difficult to exploit sparsity when observation operators are dense
(inversion-specific).

Sequential updates impossible (cannot store intermediate
covariances).
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Section 2

Solving the Memory Bottleneck
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Implicit Representation and Update of Covariance

Use an (almost-) matrix-free implicit representation of the
posterior covariance matrix.

Basic Idea

Most/all posterior covariance information can be extracted by computing
products of the posterior covariance matrix with other matrices.

Store cooking recipe for multiplication with posterior covariance.

Recipe is much lighter than full matrix.

Can be updated quickly if new data becomes available.

Implicit representation allows:

Fast inclusion of new data (update of posterior).

Transfer of computations to multiple computational units and/or
GPUs (only small multiplications involved).
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Implicit Representation of Covariance Matrix

Observation

Posterior covariance information may be extracted via products with tall
and thin matrices:

K̃A, A ∈ Rm×p, p� m

Only need to maintain a multiplication routine.
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Implicit Representation: Sequential Setting

Consider sequential data assimilation setting.

Measurements G1, ..., Gn.

Covariance after inclusion of first n batches: K(n).

Do not compute K(n), only maintain a right-multiplication routine.

CovMuln : A 7→ K(n)A

Update this implicit representation at every new data inclusion.

K(n)A = K(0)A−
n∑

i=1

K̄iR
−1
i K̄T

i A

K̄i : = K(i−1)GT
i ,

R−1i : =
(
GiK

(i−1)GT
i + τ2I

)−1
.
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Implicit Representation: Computational Cost

For reconstruction of full posterior covariance matrix, only need to store
two matrices at each data ingestion stage:

m× dn matrix Kn−1G
T
n

dn × dn matrix
(
GnKn−1nG

T
n + ∆

)−1
.

With dn number of datapoints at stage n and ∆ data noise covariance.

Only involves right-multiplication with previous stage covariance.

Can hence be defined recursively.

Substantial memory saving compared to storing full covariance.
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Figure: Memory footprint of posterior covariance as a function of model size.
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Update Algorithms

Algorithm 1 Covariance Right Multiplication Procedure after n conditioning

Require: Precomputed matrices K#
1 , ...,K

#
n and R−11 , ..., R−1n .

Prior covariance right-multiplication routine CovMul0.
Input matrix A.

Ensure: KnA

procedure CovMuln(A)
Compute K0A using prior right-multiplication routine.
Return K0A−

∑n
i=1K

#
i R
−1
i K#T

i A.

Algorithm 2 Updating intermediate quantities at conditioning step n

Require: Last step covariance right-multiplication routine CovMuln−1.
Measurement matrix Gn, measurement noise covariance ∆n.

Ensure: Step n intermediate matrices K#
n and R−1n

procedure CovUpdaten
Compute K#

n = Kn−1G
T
n using last step right-multiplication routine.

Compute R−1n =
(
GnK

#
n + ∆n

)−1
.
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Summary

By introducing an implicit representation for the covariance matrix, we are
able to deal with Larger-than-memory covariance matrices arising in large

scale Bayesian inverse problems.

In this setting, we can then:

Extract posterior covariance information.

Perform fast inclusion of new observations (updating).

Distribute computations to multiple devices (GPUs, ...).
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Use Case: Large-scale Inverse Problems

Implicit Representation allows us to tackle new questions
in large inverse problems:

Optimal Design

Uncertainty Quantification (posterior sampling, ...)
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Section 3

Optimal Design
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Example: Optimal Design on Stromboli Volcano

Use posterior covariance information to guide future data acquisition.

Observation locations selected according to pre-defined objective.

(a) simulated surface gravity (b) reconstructed internal mass
density

(c) residual variance

New observation locations selected sequentially.

Locations selected based on how observation there would change
covariance.

Requires fast access/update of posterior covariance.
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Possible Objective: Excursion Set Reconstruction

Question

What if want to learn regions of high density instead of full matter
distribution?

Target is excursion set Γ = {x ∈ D : Zx > t}.
Observations close to excursion regions more informative.

=⇒ Find criterion for how informative (about the excursion set) a
given observation location s is.

(weighted) IVR criterion

IVR(s) :=
∫
D

(
Varn [Zx]−Varn

[
Zx | G(s)

])
Pn [x ∈ Γ] dx

Where n data ingestion steps have already been performed and variances
and excursion probabilities are computed under the current (stage n)
conditional law of the field.
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IVR and Implicit Update Framework

IVR(G) ∼=
m∑
i=1

(
KGT

(
GKGT + τ2I

)−1
GK

)
ii

Requires multiplication with current covariance matrix K.

In a sequential and large scale setting, K cannot be stored.

Computation of IVR without update formulae requires inverting
concatenated dataset.

Update formulae allow to compute only contribution of new
observation G.

No need to re-invert whole dataset.

Cost scales cubically in the size of the new observations (comparted
to cubic in dataset size for direct approach).
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Test Case: Stromboli

Want fine grained reconstruction (50m resolution) of excursion set.

High resolution =⇒ big grid (∼ 150k cells) =⇒ big cov matrix (∼
150GB).

Optimal observation plan by myopic optimization of wIVR criterion.

Figure: True density and
excursion set (generated
from model).

Figure: Proposed data
collection plan, wIVR
long-range strategy, total
budget of 90 observations.

Figure: Estimated
excursion set (Vorob’ev
Expectation) and coverage
function.
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Diagnostics: Limiting Distribution

Since implicit representation allows fast inclusion of new datapoints, can
study the limiting distribution.

Limiting Distribution

Posterior distribution after data collected at all accessible locations.

Gives sense of minimal residual uncertainty (inherent to this type of
data).

Figure: True positives vs amount of
data collected.

Figure: Same, but for false positives.
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Section 4

(towards) UQ
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Posterior Sampling for large-scale Inverse Problems

Direct posterior sampling impossible (150k correlated RVs.).

Sampling (stationary, isotropic) prior is feasible (turning bands, ...).

Implicit Representation allows for fast conditioning.

=⇒ Can use residual kriging.

Algorithm 3 Residual Kriging

Require: Gaussian process Z ∼ Gp(µ, k),
observation operator G and involved points W ,
observed data y, design points X containing W .

Ensure: Conditional realisation of ZX .
Draw Z ′W from Gp(µ, k) and d dimensional vector ε ∼ N (0, τ2Id).
Compute conditional mean µ̃X with data y.
Compute conditional mean µ̃′X with data GZ ′W + ε.
Return µ̃X + Z ′X − µ̃′X .
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Residual Kriging: Example

Simulate excursion set realizations, conditional on 2018 Stromboli field
campaign data.

Figure: Prior excursion set realisations. Observation locations of shown in black.

Figure: Corresponding conditional realisations.

Posterior sampling can be used as building block for UQ on sets.
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Perspectives and Future Work

UQ for excursion sets.

New design criterions (learning transition surfaces, ...).

Criterion Optimization (lookahed, include trajectory cost).

Joint inversion (electromagnetic, seismic, neutrino?).
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The End
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Sources

https://www.itij.com/story/115685/tourists-flee-stromboli-volcano-
eruption
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