Methods for out-of-memory Bayesian Inversion with a View towards Optimal Design of Experiments

Cedric Travelletti

University of Bern

August 17, 2020

Joint work D. Ginsbourger (UniBE) and N. Linde (Unil)

- 2 Implicit quasi-matrix free Representation of Covariance Matrices
- 3 Optimal Design

(Supplemental) Set Estimation and Uncertainty Quantification on Sets

Section 1

Motivating Example

Motivating Example: Stromboli Volcano

Want to learn the interior structure of the Stromboli volcano.

• Only allowed to measure gravitational field on the surface

Question

Where should I collect data to get the best possible reconstruction?

Cedric Travelletti (Idiap)

oom bayesian inversion

This is a linear inverse problem

- unknown density field $\rho: D \to \mathbb{R}$
- measurement site $s_1, ..., s_n \in S$ on the surface
- recover ρ from the data $\{G_{s_i}[\rho]\}_{i=1,\dots,n}$.

Measurement (forward) operator

$$G_{s_i}[\rho] = \int_D \rho(x) \frac{x^{(3)} - s_i^{(3)}}{\|x - s_i\|^3} dx$$

Cedric Travelletti (Idiap)

- Define a GP prior $Z \sim Gp(\mu, k)$ on D.
- Assume the unknown ρ is a realization of Z.

Data Model

$$\mathbf{y} = (y_i)_{i=1,\dots,n}, \ y_i = G_{s_i}[Z] + \epsilon$$

- Given data y, compute conditional law of Z, conditional on the data.
- Use conditional law to approximate ρ .

Bayesian Inversion: Concrete Implementation and Challenges

- Discretization $\mathfrak{D} = \{x_1, ..., x_m\}$ into *m* cells.
- GP turns into gaussian vector.
- Prior mean $\mu_0 = (\mu(x_i))_{i=1,...,m}$, covariance matrix $K_{ij} = k(x_i, x_j)$.

Posterior is gaussian with mean vector and covariance matrix

$$\tilde{\mu} = \mu_0 + KG^T (GKG^T + \Delta)^{-1} (\mathbf{y} - G\mu_0)$$
$$\tilde{K} = K - KG^T (GKG^T + \Delta)^{-1} GK$$

Get posterior by updating mean vector and covariance matrix.

Challenges and Limitations

$$\tilde{\mu} = \mu_0 + KG^T (GKG^T + \Delta)^{-1} (\mathbf{y} - G\mu_0)$$
$$\tilde{K} = K - KG^T (GKG^T + \Delta)^{-1} GK$$

- Covariance matrix is $m \times m$.
- Forward operator is *dense*: each datapoint influenced by **all** cells in discretization.
- \implies No Sparsity.

Impossible to store covariance matrices for *real-world sized* problems.

Figure: Grid and matrices size vs resolution on Stromboli example.

- From now on, only consider *large scale setting*.
- Large := discretization fine enough ($m \gtrsim 100k$ cells) so that covariance matrices do not fit in memory on a laptop.
- Big number of datapoints has already been considered [WPG⁺19], but big number of model points (discretization) not treated in the litterature.

Section 2

Implicit quasi-matrix free Representation of Covariance Matrices

Preliminary: Computing the Posterior Mean

$$\tilde{\mu} = \mu_0 + KG^{T} \left(GKG^{T} + \Delta \right)^{-1} (\mathbf{y} - G\mu_0)$$

- Only involves K through $K^{\#} := KG^{T}$.
- Each element of K is defined *implicitly* by a formula $K_{ij} = k(x_i, x_j)$.
- Can build elements of K on the fly.
- Matrix-Matrix products easy to parallelize (line by line).

Algorithm

- Distribute chunks among computational units.
 - Each unit builds corresponding lines of K (and all columns).
 - Each unit computes corresponding lines of the product KG^t.
- Gather results and assemble complete product on main computational unit.

Implicit Representation of Covariance Matrix

Observation

Posterior covariance information may be extracted via products with *tall and thin* matrices:

 $\tilde{K}A, A \in \mathbb{R}^{m \times p}, p \ll m$

Implicit Representation of Covariance Matrix

Observation

Posterior covariance information may be extracted via products with *tall and thin* matrices:

$$\tilde{K}A, A \in \mathbb{R}^{m \times p}, p \ll m$$

Consider sequential data assimilation setting.

- Measurements $G_1, ..., G_n$. Covariance after inclusion of first n batches: K_n .
- Do not compute K_n , only maintain a right-multiplication routine.

 $CovMul_n : A \mapsto K_nA$

• Update this *implicit* representation at every new data inclusion.

Update Algorithms

Algorithm 1 Covariance Right Multiplication Procedure after n conditioning

Require: Precomputed matrices $K_1^{\#}, ..., K_n^{\#}$ and $R_1^{-1}, ..., R_n^{-1}$. Prior covariance right-multiplication routine *CovMul*₀. Input matrix *A*.

Ensure: K_nA

```
procedure CovMul_n(A)
Compute K_0A using prior right-multiplication routine.
Return K_0A - \sum_{i=1}^{n} K_i^{\#} R_i^{-1} K_i^{\#T} A.
```

Algorithm 2 Updating intermediate quantities at conditioning step n

Require: Last step covariance right-multiplication routine $CovMul_{n-1}$. Measurement matrix G_n , measurement noise covariance Δ_n . **Ensure:** Step n intermediate matrices $K_n^{\#}$ and R_n^{-1}

procedure *CovUpdate_n* Compute $K_n^{\#} = K_{n-1}G_n^{T}$ using last step right-multiplication routine. Compute $R_n^{-1} = \left(G_n K_n^{\#} + \Delta_n\right)^{-1}$.

Proposition

Say there are N datapoints, which we group in n chunks of fixed equal size $d = \frac{N}{n}$. Then:

• the storage requirement to define $CovMul_n$ is $\mathcal{O}(N(d+m))$,

• the amount of computation required to define $CovMul_n$ is $\mathcal{O}(N^2m^2d)$. Also, if $A \in \mathbb{R}^{m \times p}$, $p \ll m$, then the number of operations required to compute K_nA is $\mathcal{O}(Nm^2p)$.

- It is possible to extract information from the posterior covariance matrix, even when its size is way larger than the available memory.
- Sequential data assimilation in this context is also feasible.

Section 3

Optimal Design

Example: Optimal Design on Stromboli Volcano

Use posterior covariance information to guide future data acquisition.

(a) simulated surface gravity (b) reconstructed internal mass $% \left(c\right) \right)$ residual variance density

Implicit update formula allow extraction of posterior covariances for large-scale problems.

Cedric Travelletti (Idiap)

oom bayesian inversion

August 17, 2020 17 / 31

Criterion for Optimal Reconstruction: IVR

Question

Say we have a data collection plan: observation locations $s_1, ..., s_n$, corresponding measurement operator G.

- Can we assess (a priori) how much information this plan will provide?
- Can we compare different data collection plans?
- Can we compute an optimal plan?

Possible criterion: Integrated Variance Reduction:

$$IVR(G) := \int_{D} \left(Var\left[Z_{x} \right] - Var\left[Z_{x} \mid G \right] \right) dx \cong \sum_{i=1}^{m} \left(KG^{T} \left(GKG^{T} + \Delta \right)^{-1} GK \right)_{ii}$$

- Independent of observed data.
- For large data collection plans, can be computed by chunking + update algorithm.
- Can be computed after inclusion of a prior dataset using update algorithm.

Want to plan field campaign on volcano:

Challenges	Setup
• Most locations hard to access \implies observations costly.	 Collect first batch of observations at sea level on first day.
 Easier to follow existing trails. 	 Update model.
• Some locations are inacessible.	• Choose where to go next.

Want to plan field campaign on volcano:

Challenges	Setup
• Most locations hard to access \implies observations costly.	 Collect first batch of observations at sea level on first day.
 Easier to follow existing trails. 	 Update model.
 Some locations are inacessible. 	• Choose where to go next.

Figure: IVR for observations at different locations on the surface. Already observed data in black.

Figure: IVR for different paths. Already observed data in black.

Long term objectives will leverage the *sequential* aspect of update formulae

- Integrate cost and graph structure.
- Data-dependent criterions.
- Extend to dynamic planning.
- But we are currently targetting our efforts towards

Set Estimation

Section 4

(Supplemental) Set Estimation and Uncertainty Quantification on Sets

Set Estimation

We want to identify high density regions (excursion sets)

$$\Gamma^* = \{x \in D : \rho(x) \ge t_0\}$$

A simple plug-in estimate can be obtained using the posterior mean

$$\Gamma_{\textit{plug-in}} = \{ x \in D : \tilde{\mu}(x) \ge t_0 \}.$$

Better estimates can be obtained by considering the full posterior distribution.

The posterior distribution of the conditional field gives rise to a random closed set (RACS) $\boldsymbol{\Gamma}$

$$\Gamma = \{x \in D : \tilde{Z}_x \ge t_0\}$$

Where \tilde{Z} is any Gaussian Process whose law corresponds to the conditional law.

Can consider the pointwise probability to belong to the excursion set

Coverage Function

 $p_{\Gamma}: D
ightarrow [0,1]$ $p_{\Gamma}(x) := \mathbb{P}[x \in \Gamma]$

Pointwise probability to belong the the excursion set above 2500 kg/m3.

The coverage function allows us to define a parametric family of set estimates for $\boldsymbol{\Gamma}$

Vorob'ev Quantiles

$$Q_{\alpha} := \{ x \in D : p_{\Gamma} \ge \alpha \}$$

The family of quantiles Q_{α} gives us a way to estimate Γ by controlling the (pointwise) probability α that the members of our estimate lie in Γ .

- Threshold α controls probability that points in our estimate lie in Γ .
- Can pick it such that the volume of the resulting set is equal to the expected volume of the excursion set

Vorob'ev Expectation

The Vorob'ev expectation is the quantile ${\it Q}_{\alpha_V}$ with threshold α_V chosen such that

 $\mu(Q_{\alpha_V}) = \mathbb{E}[\mu(\Gamma)]$

The expected volume of the excursion set can be computed using the coverage function

Robbins Theorem

$$ar{V}_{\Gamma} := \mathbb{E}[\mu(\Gamma)] = \int_D p_{\Gamma}(x) dx$$

Vorob'ev Expectation

Plugin estimate and Vorob'ev expectation for excursion set above 2500.0 $\rm kg/m3.$

Vorob'ev expectation: $\alpha = 0.22$, expected excursion measure $\mathbb{E}[\mu(\Gamma)] = 6678.16$ cells. Vorob'ev deviation: 7290.031 cells.

Cedric Travelletti (Idiap)

Can quantify uncertainty on an estimate Q for Γ by its Vorob'ev deviation

 $\mathcal{D}(Q) := \mathbb{E}[\mu(\Gamma \Delta Q)]$

Theorem

$$\mathcal{D}(Q) = \int_Q \left(1 - p_{\Gamma}(x)\right) dx + \int_{Q^c} p_{\Gamma}(x) dx$$

This is the next criterion that we want to investigate.

- Compute designs that optimally recover high-density regions.
- Can leverage closed form formulae for expected excursion probability.

Vorob'ev expectation achieves the minimum deviation among all sets that have measure equal to the expected measure of Γ .

Theorem

The Vorob'ev expectation minimizes the deviation among closed set with volume $\bar{V}_{\Gamma}.$

$$\mathcal{Q}_{lpha_V}\in {\sf arg\,min}\{\mathcal{D}(\mathcal{Q})|\mathcal{Q}\subset X\,\,{\sf closed},\,\,\mu(\mathcal{Q})=ar{\mathcal{V}}_{\sf \Gamma}\}$$

Thank You

https://www.itij.com/story/115685/tourists-flee-stromboli-volcano-eruption

Ke Alexander Wang, Geoff Pleiss, Jacob R. Gardner, Stephen Tyree, Kilian Q. Weinberger, and Andrew Gordon Wilson, *Exact gaussian processes on a million data points*, 2019.