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Probing the interior of the Stromboli volcano from the
outside

Consider the Stromboli island

Can we say anything about the internal structure of the volcano by only
collecting data from the surface?
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Use Gravimetry
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Use Gravimetry

Use Gravimetric Measurements

Go to several different locations on the surface of the volcano.

Measure gravitational field there.

Use it to infer the mass density distribution in the inside.
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Mathematical Setup

Model density field as an unknown scalar function on the volcano interior.

Don’t have access to it (not even pointwise evaluations).

Can only measure gravity field.

At discrete set of locations only.
Depends linearly on mass distribution.
Can be modelled as measuring a linear operator applied to the
unknown function.

So called Linear Inverse Problem.

How can we solve it?
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The traditional Approach...

Our volcano can be modelled as a bounded, closed region D ⊂ R3. The
mass density field is then an unknown function

u0 : D → R

and we only have acces to a linear operator applied to the function

yobs = G (u0) ∈ Rd

Geophysicists solve the problem by minimizing some regularized misfit
function on a discretized model space

u∗ = arg min
u∈Rm

||G (u)− yobs ||+ λ||u − uref ||

Here the models are discretized in Rm and uref ∈ Rm is some reference
model.
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...and its drawbacks

u∗ = arg min
u∈Rm

||G (u)− yobs ||+ λ||u − uref ||

No procedure to choose regularization weight λ.

Choice of reference model uref is arbitrary.

No estimation of the uncertainty left in the solution.

Only static design of experiments.

Purely discrete, even if problem is intrinsically functional.

This motivates us to use a probabilistic framework.
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Probabilistic framework (sketch)

Put a prior over possible solutions to the inverse problem (have to
restrict to some class of functions).

Get a posterior conditional on the observed data

Prior → Observe data → Bayes theorem → Posterior

Principled treatment of regularization through hyperparam estimation

Measure of residual uncertainty

Access to full posterior distribution paves the way optimal
experimental design.

Probabilistic framework allows to bring the latest advances in ML to
Geophysics (and to the Inverse Problem community in general).
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...and its drawbacks

These advantages come at a cost.

Probabilistic framework is way heavier than the usual one.

Typically, if computational cost of traditional model is O(n) for some
n, then cost of probabilistic version is roughly O(n2).
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Goals of the Thesis

Use probabilistic inversion framework to bring the following to the inverse
problem community:

Set Estimation What if we are not interested in the solution itself,
but in regions where the solution has certain properties (excursion,
steep variations, ...).
UQ Once we have an estimate for those region, can we say how
confident we are in our estimate?
Experimental Design Can we use this confidence measure to guide
the data acquistion process.

In particular: can we select measurements that will improve our
estimate of the region of interest?.

Functional Inversion Does a function space formulation provide
better estimates?
Big Data Extend the usual Bayesian Inversion techniques to models
that are bigger than memory using recent advances in computing
(goal discovered along the way).
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Section 1

Inversion with Gaussian Process Priors
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Remember we want to recover an unknown function

u0 : D → R

from indirect measurements yobs = G (u0).

To do this in a Bayesian way, we need to be able to define a prior on
functions.

Use Gaussian Processes
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Gaussian Processes 101

Definition

Given a set D, a Gaussian Process on D is a real-valued stochastic process
Zx on D, such that for any finite number of points x1, ..., xn ∈ D, the
distribution of (Z1, ...,Zn) is gaussian.

Such a process is entirely characterized by its mean and covariance
function

µ0 : D → R; x 7→ E[Zx ]

k : D × D → R; (x , y) 7→ Cov [Zx ,Zy ]

Notation: Zx ∼ Gp(µ0, k).

Provides a neat way to define priors on functions.
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Gaussian Processes 101 (contd.)

Conversely, given a function µ0 : D → R and a positive definite function
k : D × D → R, we can define a Gaussian Process Zx ∼ Gp(µ0, k).

Usually, k is chosen to belong a some class of kernels:

Gaussian: k(x , y) = σ2
0 exp

(
− ||x−y ||

2

2λ2

)
Matérn 3/2: k(x , y) = σ2

(
1 +
√

3 ||x−y ||λ

)
exp

(
−
√

3 ||x−y ||λ

)
The kernel determines the regularity of the realizations of the process.
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Discrete Version

In practice, will only be interested in value of the process at finite number
of points x1, ..., xm.

Gaussian process Z ∼ Gp(µ0, k) becomes gaussian random vector
Z = (Zx1 , ...,Zxm).

Fully characterized by mean vector ~µ0 and covariance matrix K

~µ0 = (µ0(x1), ..., µ0(xm))

K = (Ki ,j)i ,j=1,...,m , Kij = k(xi , xj)

From now on, drop vector arrow. Meaning of µ0 will be clear from context.
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Gaussian Process Conditioning for Inversion

Say we have the gaussian random vector Z = (Zx1 , ...,Zxm) and we have
an m × d measurement matrix G .

Say we observe

yobs = GZ + η

Where η ∼ N (0,∆) independent of Z .

Then, the law of the vector, conditional on the data is gaussian with mean
and covariance matrix

µ̃ = µ0 + KGT
(
GKGT + ∆

)−1(
yobs − Gµ0

)
K̃ = K − KGT

(
GKGT + ∆

)−1
GK
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µ̃ = µ0 + KGT
(
GKGT + ∆

)−1(
yobs − Gµ0

)
K̃ = K − KGT

(
GKGT + ∆

)−1
GK

The conditional mean µ̃ can then be used as an approximation of the
unkown u0.

Inversion performed by updating the mean and covariance function.
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Section 2

Inverting the Stromboli
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Recovering mass density from gravimetric measurements

Measure (relative) vertical
component of the gravitational
field at discrete locations on the
surface of the volcano.

Solve the inverse problem to
reconstruct mass density inside.

Reconstruct density at 50m
resolution (∼200’000 cells) from
543 measurements,

Data provided by N. Linde’s
group [LBR+14].
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Mathematical Formulation

Discretize volcano in cubic cells.

Only want to reconstruct the
value of the density field at the
cells centroid x1, ...xm.

Unknown function is now a
vector u0 ∈ Rm.

We have access to the (vertical
component of) the gravity field
at locations z1, ..., zd on the
surface.

Figure: Location of
measurement sites z1, ..., zd

Discretization mapping: u 7→ (u(x1), ..., u(xm))t =: (u1, ..., um)t =: u
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Measurement Operator

We have to define the measurement operator G corresponding to
measuring the gravitational field of the unknown function.

Proposition

For a given location on the boundary z0 ∈ ∂D, the vertical component of
the gravitational field generated by a mass distribution u ∈ L2

0(D) is given
by:

g [u](z0) = γ

∫
D
u(x)φ(x , z0)dx (1)

Where γ is Newton’s constant and we have the Green function:

φ(x , z) =
x3 − z3

‖x − z‖3
, x = (x1, x2, x3) (2)

and the subscripts denote the components in the canonical basis of R3.
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Measurement Operator (discrete case)

In the discrete case, we replace u in the the integral by the piecewise
constant approximation defined by its value at the cell centroids.

This give us a linear operator

g̃ : Rm → R

Stack the different measurements to obtain a matrix.

(discretized) Measurement Operator

Given measurement sites z1, ..., zd ∈ ∂D scattered on the surface of the
volcano, define the measurement matrix G to be the matrix representing
the linear operator

G : Rm → Rd

u = (u1, ..., um) 7→ (g̃ [u](z1), ..., g̃ [u](zd))
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We now have all the ingredients to solve our inverse problem. Recall the
conditional mean and covariance are given by

µ̃ = µ0 + KGT
(
GKGT + ∆

)−1(
dobs − Gµ0

)
K̃ = K − KGT

(
GKGT + ∆

)−1
GK

Here the dimensions involved are d ×m for G and m ×m for K .

This seems innocent, but ...

The inversion grid we have to use contains 200′000 cells.

The matrix K hence contains 40 billion elements.

This would take up 160 GB of memory on
a computer
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A closer look at the dimensions

The Stromboli inversion problem involves the following:

500 datapoints

2 · 105 inversion cells

Then the matrices and storage requirements (assuming single precision
floating point numbers) at play are

K#︸︷︷︸
2·105×500=400MB

:= K︸︷︷︸
2·105×2·105=160GB

× GT︸︷︷︸
2·105×500=400MB

But computation of posterior mean only involce K#.
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Solving the Dimensionality Problem I

A few useful observations

Covariance matrix K too big to be stored.

But only needed in product with projections to lower dimension, e.g.
K# = KG t .

Each element of K is defined implicitly by a formula Kij = k(xi , xj).

Can build elements of K on the fly.

Only need to compute matrix-matrix products of K .

Matrix-Matrix products easy to parallelize (line by line).
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Solving the Dimensionality Problem II

Rember we want to compute K# = KG t .

Subdivide model space in chunks:

(x1, ..., xm) = (X1, ...,XNchunks
) , X1 = (x1, ..., xn1) and so on.

Algorithm

Distribute chunks among computational units.

Each unit builds corresponding lines of K (and all columns).
Each unit computes corresponding lines of the product KG t .

Gather results ans assemble complete product on main computational
unit.
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Algorithm

Distribute chunks among computational units.

Each unit builds corresponding lines of K (and all columns).
Each unit computes corresponding lines of the product KG t .

Gather results ans assemble complete product on main computational
unit.

Allows scaling in the model size.
Specific to inverse problem setting (not valid for usual kriging).

Big number of datapoints has already been considered [WPG+19], but big
number of model points not treated in the litterature.
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Inversion Result
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Section 3

Hyperparameter Estimation
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Hyperparameter Estimation

Results of preceding slide produced using some Gaussian Process prior.

How can we choose the prior mean and
covariance function?

Not treated in traditional inversion schemes.

Techniques developed here extends usual gaussian process methods to
inverse setup.

Cedric Travelletti (Idiap) bayesian geophysical inversion December 13, 2019 30 / 41



Hyperparameter Estimation

Results of preceding slide produced using some Gaussian Process prior.

How can we choose the prior mean and
covariance function?

Not treated in traditional inversion schemes.

Techniques developed here extends usual gaussian process methods to
inverse setup.

Cedric Travelletti (Idiap) bayesian geophysical inversion December 13, 2019 30 / 41



Hyperparameter Estimation

Results of preceding slide produced using some Gaussian Process prior.

How can we choose the prior mean and
covariance function?

Not treated in traditional inversion schemes.

Techniques developed here extends usual gaussian process methods to
inverse setup.

Cedric Travelletti (Idiap) bayesian geophysical inversion December 13, 2019 30 / 41



Will restrict ourselve to constant prior mean

µ0 = m0Im, m0 ∈ R, Im = (1, ..., 1)t ∈ Rm

And to stationary isotropic covariance kernels of the form

k(x , y) = σ2
0 k̃

(
||x − y ||
λ0

)
Where σ2

0 is the prior variance, k̃(0, 0) = 1 and λ0 is a lengthscale
parameter.
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Maximum Likelihood

Need to optimize 3 hyperparameters

prior mean m0

prior variance σ2
0

lengthscale λ0.

Given observed data y , marginal data likelihood may be written as [RW06]:

−2L(µ0, λ0, σ0; y) = n log 2π − log |R−1|+
(
y − Gµ0

)T
R−1

(
y − Gµ0

)

Where R = R(σ2
0, λ0) = GK (σ2

0, λ0)GT + ∆.

Choose hyperparameters that maximize the marginal data likelihood.
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Maximizing the Likelihood in Practice

Optimal m0 can be expressed analytically as function of the others

m̂0(σ2
0, λ0; y) =

(
ITGTRGI

)−1
yTRGI

Remaining hyperparameters appear in (big) covariance matrix K , and
hence in R.

σ2
0 may be factorized out of the matrix.

Can thus compute gradients for σ2
0 .

Implementation we use (PyTorch) gives us free gradients.
Optimize σ2

0 by gradient descent.
λ0 cannot be factorized.

Appears in the full (not computable) covariance matrix.
Gradient-based approaches are hopeless
Fallback to brute-force search over discrete reasonable range.
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Inversion Results

Hyperparameters Metrics

Kernel λ λ̄ m0 σ0 L Train Test LOOCV

exponential 902 625 2046.6 197.1 -547.96 0.06799 12.7021 0.1651
Matérn 3/2 562 545 2112.5 221.4 -531.97 0.07180 12.6931 0.1648
Matérn 5/2 462 481 2133.8 221.6 -518.81 0.0705 12.6953 0.1730

Gaussian 342 403 2172.9 229.0 -478.31 0.0800 12.6959 0.1760

Here λ̄ is the practical range, i.e. the distance at which the corresponding
kernel function drops to half of its value at zero
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Comparing Kernels

Can perform hyperparameter optimization for each class of kernel and
compare posterior mean

Sea level slice of posterior mean [mGal] for different kernels. From left to
right: squared exponential, Matérn 3/2, Matérn 5/2.
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Section 4

Next Steps
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Next Steps

Fast inclusion of new datapoints.

Functional formulation [Stu10].

Paves the way towards conditional simulations [?].
But need to solve eigenvalue problem over model space (big).

Set estimation

Once the above are completed, we should have the ingredients to move
towards

Sequential experimental design.
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Next Steps: Fast Updating
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Next Steps: Functional Formulation
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Next Steps: Set Estimation
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Thank You
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Section 5

Set Estimation and Uncertainty Quantification on Sets
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Set Estimation

We want to identify high density regions (excursion sets)

Γ∗ = {x ∈ X : u0(x) ≥ t0}

A simple plug-in estimate can be obtained using the posterior mean

Γplug−in = {x ∈ X : µ̃(x) ≥ t0}.

Better estimates can be obtained by considering the full posterior
distribution.

Azzimonti et al. (2016), Chevalier et al. (2013), Molchanov (2015)
Cedric Travelletti (Idiap) bayesian geophysical inversion December 13, 2019 2 / 20



Random Closed Sets (RACS)

The posterior distribution of the conditional field gives rise to a random
closed set (RACS) Γ

Γ = {x ∈ X : Z̃x ≥ t0}

Where Z̃ is any Gaussian Process whose law corresponds to the
conditional law.
Can consider the pointwise probability to belong to the excursion set

Coverage Function

pΓ : X → [0, 1]

pΓ(x) := P[x ∈ Γ]
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Coverage function

Pointwise probability to belong the the excursion set above 2500 kg/m3.
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Random Closed Sets Theory

The coverage function allows us to define a parametric family of set
estimates for Γ

Vorob’ev Quantiles

Qα := {x ∈ X : pΓ ≥ α}

The family of quantiles Qα gives us a way to estimate Γ by controlling the
(pointwise) probability α that the members of our estimate lie in Γ.
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Threshold α controls probability that points in our estimate lie in Γ.

Can pick it such that the volume of the resulting set is equal to the
expected volume of the excursion set

Vorob’ev Expectation

The Vorob’ev expectation is the quantile QαV
with threshold αV chosen

such that
µ(QαV

) = E[µ(Γ)]

The expected volume of the excursion set can be computed using the
coverage function

Robbins Theorem

V̄Γ := E[µ(Γ)] =

∫
X
pΓ(x)dx
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Vorob’ev Expectation

Plugin estimate and Vorob’ev expectation for excursion set above 2500.0
kg/m3.

Vorob’ev expectation: α = 0.22, expected excursion measure
E[µ(Γ)] = 6678.16 cells. Vorob’ev deviation: 7290.031 cells.
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Vorob’ev Deviation

Can quantify uncertainty on an estimate Q for Γ by its Vorob’ev deviation

D(Q) := E[µ(Γ∆Q)]

Theorem

D(Q) =

∫
Q

(
1− pΓ(x)

)
dx +

∫
Qc

pΓ(x)dx

This quantity will be the starting point for doing Bayesian optimal design,
by selecting measurements that reduce the uncertainty.
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Vorob’ev expectationt achieves the minimum deviation among all sets that
have measure equal to the expected measure of Γ.

Theorem

The Vorob’ev expectation minimizes the deviation among closed set with
volume V̄Γ.

QαV
∈ arg min{D(Q)|Q ⊂ X closed, µ(Q) = V̄Γ}
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Section 6

Functional Bayesian Approach to Inverse Problems
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Solving the problem by discretization works, but it has some disadvantages

Question of the discretization dependence

Poor MCMC

No regularity information. Hence wasted information for set
estimation.

Thats why we want to take a functional
approach
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Ingredients

Functional approach to bayesian inversion was formalized by [Stu10].
Its main ingredients are:

A separable Hilbert space H (model space).

A Borel probability measure µ0 on H (prior).

A bounded linear operator G : H → Rd (measurement operator).

Some data y ∈ Rd (call Rd the data space).

Then Bayes Theorem gives posterior

dµy

dµ0
=

1

Z
exp (−Φ(u; y))
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Rules of the Game

There is an unknown function u0 ∈ H which we would like to recover.

We can only measure linear operators of the function, subject to some
noise

y = G (u0) + η

Where η ∼ N (0, Γ) is a random vector on Rd , independent of u0 and y .
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Bayesian View

In the Bayesian setting, we consider a random element u ∈ H, distributed
according to the prior µ0 (technical details will follow, for the moment,
just forget we are in a function space).

Then, conditional on the data y = G (u) + η, the random variable u|y is
distributed according to some measure µy which will serve as our posterior.

Theorem (Posterior Distribution)

Conditional on the data, the random variable u|y is distributed according
to a measure µy , whose Radon-Nikodym derivative is given by

dµy

dµ0
(u) =

1

Z
exp (−Φ(u; y))

With Φ(u; y) = 1
2 ||Γ

− 1
2 (y − G (u))||2 and Z a normalization constant.
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Inversion Assumptions

In order for the posterior measure to exist and be well-defined, the
measurement operator should satisfy some technical conditions:

Let the operator G→ Rm satisfy:

i) For every ε > 0 there exists M = M(ε) ∈ R such that:

∀u ∈ X : ||Γ−
1
2G(u)||2 ≤ exp

(
ε||u||2H + M

)
ii) For every r > 0 there exists K = K (r) ∈ R such that:

∀u1, u2 ∈ BX
r (0) : ||Γ−

1
2
(
G(u1)− G(u2)

)
|| ≤ K ||u1 − u2||H
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Continuity in the Data

Theorem (Continuity in the data)

Provided the inversion assumptions are satisfied, the posterior measure µy

is Lipschitz in the data on any bounded domain:

∀r > 0 : ∃Cr > 0 : ∀y1, y2 ∈ Br (0) ⊂ H

dHell(µ
y1 , µy2) ≤ Cr ||Γ−

1
2 (y1 − y2)||
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Section 7

Model Selection
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Cross-Validation

Model selection by minimization of leave-one out root mean squared
error.

Remove one data point at a time and predict by conditioning on the
remaining ones, average error over whole dataset.

Computation by brute force would be too expensive, fortunately, we have
the fast-leave one out formula (adapted from Dubrule (1983)):

Ẑxn+1 = µ0(xn+1)− 1
(n+1)R−1

n+1,n+1

n∑
i=1

(n+1)R−1
n+1,i

(
yi − µ0(xi )

)

Working on extending to k-fold cross-validation.
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Data Distribution
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https://www.itij.com/story/115685/tourists-flee-stromboli-volcano-
eruption
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