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Section 1

Problem Overview
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Problem Description

Recovering the mass density field
inside the Stromboli volcano from
gravimetric measurements.

Linear inverse problem, usually
solved by least square +
regularization.

We here take a bayesian approach,
using gaussian process priors.

Allows recent advances in ML to be
brought to geophysics

The methods yields a posterior
distribution over mass density fields
that enables finer analysis than a
deterministic solution.

https://www.itij.com/story/115685/tourists-flee-stromboli-volcano-eruption
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Recovering mass density from gravimetric measurements

Measure (relative) vertical component of the gravitational field at
discrete locations on the surface of the volcano.

Solve the inverse problem to reconstruct mass density inside.

Test case on Stromboli island: 543 measurements, reconstruct density
at 50m resolution (∼200’000 cells).

Data provided by N. Linde’s group (see Linde et al. 2014).
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Goals

Provide estimates of target regions regions (high density, high
gradient, ...).

UQ on target regions

(future) Sequentially select new measurement locations for optimal
reconstruction of the target regions.
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Section 2

Physical Setup
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Let u(x) denote the mass
density field inside the volcano.
We require it to be square
integrable and to vanish on the
boundary: u ∈ L2

0(X ).

We observe the z-component of
the gravitational field at discrete
locations y1, ..., yd ∈ ∂X on the
boundary.
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For a given location on the boundary y0 ∈ ∂X , the z-component of the
gravitational field generated by a mass distribution u ∈ L2

0(X ) is given by:

gz [u](y0) = γ

∫
X
u(x)Gz(x , y0)dx (1)

Where γ is Newton’s constant and we have the Green function:

Gz(x , y) =
x3 − y3

‖x − y‖3
, x = (x1, x2, x3) (2)

and the subscripts denote the components in the canonical basis of R3.
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Measurements at locations y1, .., yd on the boundary define a collection of
linear forms `i :=: gz [.](yi ), i = 1, ..., d .

`i : L2
0(X )→ R

u 7→ γ

∫
X
u(x)Gz(x , yi )d

3x

Collect the results of the measurements in a vector by defining:

F : L2
0(X )→ Rd

u 7→
(
`1(u), ..., `d(u)

)t
We call F the forward operator.
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Section 3

Bayesian Inversion

Cedric Travelletti (Idiap) UQ on target regions September 2, 2019 11 / 34



Problem Formulation in GP framework

Put a gaussian process prior on the mass density:
(Zx)x∈X ∼ GP(µ, k).

Condition the field on the data `i [u] = gi , i = 1, ..., d .

Posterior distribution of the conditional field Z̃x provides a
distribution of solutions to the inverse problem.
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The posterior distribution of the conditional field is a GP with covariance
function and mean function given by

µ̃(x) = µ(x) + li (k(x , .))
(
li (li (k(., .))

)
+ ∆ε)

−1
(
gi − li (µ(.))

)
k̃(x , x ′) = k(x , x ′)− li (k(x , .))

(
li (li (k(., .))) + ∆ε

)−1
li (k(x ′, .))

Inversion performed by updating the mean and covariance function.

∆ε denotes the noise variance.
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Discretization

Inversion performed on a grid of 50 m. resolution.

GP turns into a gaussian vector Zm := (Zx1 , ...,Zxm)t .

Conditioning on FZm = (d1, , ..., dd)t =: dobs , posterior mean and
covariance are

µ̃ = µ0 + KFT
(
FKFT −∆ε

)−1(
dobs − Fµ0

)
K̃ = K − KFT

(
FKFT −∆ε

)−1
FK
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Implementation Challenges related to the Conditioning

Numerically, main challenge is to compute the m × d covariance
pushforward KFT , which involves the huge m ×m covariance matrix.

Due to the size of the covariance matrix (4 ∗ 1010 in our case), it can
never be fully built, nor stored in memory. This also means that
optimizing any parameter appearing inside it through gradient-based
method is a lost cause.

Matrix products computed on GPU after manual chunking.
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Section 4

Hyperparameter Estimation

Cedric Travelletti (Idiap) UQ on target regions September 2, 2019 16 / 34



Maximum Likelihood

3 hyperparameters to optimize (in the squared exponential case): prior
mean m0, prior variance σ2

0, lengthscale λ0.

Estimate hyperparameters by MLE.
m0 by concentrating
σ2

0 by (automatic) gradient descent
λ0 by brute force grid search

The marginal data likelihood may be written as

−2L(µ0, λ0, σ0) = n log 2π − log detR−1

+
(
dobs − Gµ0

)T
R−1

(
dobs − G~µ0

)

Concentrating:

µ̂0 =
(
ITGTRGI

)−1
dT
obsRGI
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Hyperparameter Estimation

Optimization of the lengthscale parameter λ0 for the squared exponential
kernel.
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Inversion Results

Sea level slice of posterior mean [mGal] for different kernels. From left to
right: squared exponential, Matérn 3/2, Matérn 5/2.
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Section 5

Model Selection
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Cross-Validation

Model selection by minimization of leave-one out root mean squared
error.

Remove one data point at a time and predict by conditioning on the
remaining ones, average error over whole dataset.

Computation by brute force would be too expensive, fortunately, we have
the fast-leave one out formula (adapted from Dubrule (1983)):

Ẑxn+1 = µ0(xn+1)− 1
(n+1)R−1

n+1,n+1

n∑
i=1

(n+1)R−1
n+1,i

(
yi − µ0(xi )

)

Working on extending to k-fold cross-validation.

Cedric Travelletti (Idiap) UQ on target regions September 2, 2019 21 / 34



Data Distribution
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Cross-Validation Results

Kernel Train RMSE LOOCV RMSE Test RMSE

Squared exponential 0.073 0.119 0.147
Matérn 3/2 0.0735 0.114 0.138
Matérn 5/2 0.0755 0.116 0.136

Table: Root mean squared error [mGal].

Train/Test split: 350/192.
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Section 6

Set Estimation and Uncertainty Quantification on Sets
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Set Estimation

We want to identify high density regions (excursion sets)

Γ∗ = {x ∈ X : u(x) ≥ u0}

A simple plug-in estimate can be obtained using the posterior mean

Γplug−in = {x ∈ X : µ̃(x) ≥ u0}.

Better estimates can be obtained by considering the full posterior
distribution.

Azzimonti et al. (2016), Chevalier et al. (2013), Molchanov (2015)
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Random Closed Sets (RACS)

The posterior distribution of the conditional field gives rise to a random
closed set (RACS) Γ

Γ = {x ∈ X : Z̃x ≥ u0}

Can consider the pointwise probability to belong to the excursion set

Coverage Function

pΓ : X → [0, 1]

pΓ(x) := P[x ∈ Γ]
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Coverage function

Pointwise probability to belong the the excursion set above 2500 kg/m3.
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Random Closed Sets Theory

The coverage function allows us to define a parametric family of set
estimates for Γ

Vorob’ev Quantiles

Qα := {x ∈ X : pΓ ≥ α}

The family of quantiles Qα gives us a way to estimate Γ by controlling the
(pointwise) probability α that the members of our estimate lie in Γ.
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Threshold α controls probability that points in our estimate lie in Γ.

Can pick it such that the volume of the resulting set is equal to the
expected volume of the excursion set

Vorob’ev Expectation

The Vorob’ev expectation is the quantile QαV
with threshold αV chosen

such that
µ(QαV

) = E[µ(Γ)]

The expected volume of the excursion set can be computed using the
coverage function

Robbins Theorem

V̄Γ := E[µ(Γ)] =

∫
X
pΓ(x)dx
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Vorob’ev Expectation

Plugin estimate and Vorob’ev expectation for excursion set above 2500.0
kg/m3.

Vorob’ev expectation: α = 0.22, expected excursion measure
E[µ(Γ)] = 6678.16 cells. Vorob’ev deviation: 7290.031 cells.
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Vorob’ev Deviation

Can quantify uncertainty on an estimate Q for Γ by its Vorob’ev deviation

D(Q) := E[µ(Γ∆Q)]

Theorem

D(Q) =

∫
Q

(
1− pΓ(x)

)
dx +

∫
Qc

pΓ(x)dx

This quantity will be the starting point for doing Bayesian optimal design,
by selecting measurements that reduce the uncertainty.
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Vorob’ev expectationt achieves the minimum deviation among all sets that
have measure equal to the expected measure of Γ.

Theorem

The Vorob’ev expectation minimizes the deviation among closed set with
volume V̄Γ.

QαV
∈ arg min{D(Q)|Q ⊂ X closed, µ(Q) = V̄Γ}

Cedric Travelletti (Idiap) UQ on target regions September 2, 2019 32 / 34



Section 7

Next Steps
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New kernels (anisotropic, non-stationary).

New random field models (gauss-markov random fields, ...).

Sequential experimental design: select new measurement locations to
improve estimate on a given target region.
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