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Abstract

We present new methods for distributed estimation of large covariance matrices.

1 Introduction

Kalman filtering is a data assimilation method that aims at ... It has been used successfully in a
variety of domains such as ... and ... In spite of these achievements, the original Kalman filter suffers
from several limitations that prevent its application at larger scales. This has given rise to a variety
of modified Kalman filters, such as ..., ... and ... . Of all the difficulties associated with the vanilla
Kalman filter, most of them can be traced back to the background covariance matrix. Indeed, this
matrix is quadratic in the number of prediction points, which makes it hard to handle and store at
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larger model sizes. One approach proposed to alleviate these difficulties is the ensemble Kalman
filter (EnKF), first introduced by Evensen (1994) and subsequently developped in (Evensen, 2003;
Evensen et al., 2009). Ensemble Kalman filtering gets rid of the background covariance matrix by
instead updating sequentially a sample (ensemble) of the prior background distribution and using the
empirical sample covariance as an approximation of the true covariance. Thus, instead of storing a
full covariance matrix, EnKF only has to store the (updated) ensemble members at each step.

For most applications, the EnKF provides an efficient, tractable approximation to the vanilla Kalman
filter, but it has an Achilles heel: for any application that requires meddling with the covariance, the
difficulties of the vanilla Kalman filter come back in full force. An example of such an application
is covariance regularization. Indeed, at tractable (small) ensemble sizes, the empirical covariance
suffers from undersampling, which significantly degrades the performance of the filter (long-range
correllations, variance underestimation, artifacts, ...). This means that, in practice, the empirical
covariance has to be regularized before in can be used for filtering (Anderson and Anderson, 1999;
Hamill et al., 2001), hence requiring access to the full matrix, bringing us back to the chores of the
original filter.

In practice, these problems are usually solved by considering some sequential version of the filter
(Houtekamer and Mitchell, 2001), where observations are assimilated in batches, so that, at each
iteration, only the parts of the covariance associated to the data points being currently assimilated
need to be computed. It has long been known to the community that, when used in conjunction with
covariance regularization techniques, sequential processing breaks down the theoretical guarantees
of the EnKF and can yield to unwanted consequences. These include, among others, dependency
of the results on observations ordering. Heuristical approaches for "optimal" observation ordering
during assimilation have been proposed (Whitaker et al., 2008), and while the problem is known,
practical applications of the EnKF resort to sequential assimilation as a last resort, owing to the
computational impossibility of assimilating all data synchronously, as would be required by the
original filter formulation.

The first, and to our knowledge only, systematic study of order dependency in sequential ensemble
Kalman filtering was undertaken by (Nerger, 2015). This study demonstrates that the use of covariance
localization (Hamill et al., 2001) leads to observation ordering dependency when used in the square
root ensemble Kalman filter of Tippett et al. (2003). The study concludes that when observational
erros are similar in magnitude to model errors, the ordering effect is of moderate significance. While
such an assumption can be met in some setups, it does not hold in general for ensemble-based climate
reconstructions (Bhend et al., 2012) where model uncertainties can be large.

In this work, we introduce a new implementation of the ensemble Kalman filter that leverages
the most recent progress in distributed computing. Through the use of distributed arrays (Dask
Development Team, 2016; Rocklin, 2015), the full model error covariance matrix can be built in
(distributed) memory, which allows our implementation to assimilate all observations in a single batch
(all-at-once), thus getting rid of ordering dependencies. This allows to use localization in EnKF while
still retaining the theoretical properties of the original filter. The computational scalability of this new
implementation allows it to conduct all-at-once,localized, EnKF assimilation on large-scale problems
such as global climate reconstruction (Bhend et al., 2012; Franke et al., 2017). We believe that by
leveraging the most recent developments in distributed computing, this new approach opens the door
to a principled use of covariance localization in large-scale applications of ensemble (square-root)
Kalman filtering.

To demonstrate our new implementation, we compare the performance of sequential assimilation
and all-at-once assimilation on synthetic problems and on real-world paleoclimatic reconstruction
applications such as reconstruction of the Tambora eruption event and climate re-analysis of the
whole 20th century. In passing, we introduce the use of scoring rules (Gneiting and Raftery, 2007)
for comparison of different climate forecasts. While scoring rules are broadly known in the statistics
community; climatology and the natural sciences that leverage data assimilation techniques usually
resort to metrics that consider the assimilation result as a pointwise prediction. In contrast, scoring
rules consider the full probabilitsic nature of the assimilation, allowing for a finer assesment of the
forecast accuracy (note that here the word forecast is also used for prediction of past climate states).

This paper is structured as follows: in section 2 we review the basics of the ensemble Kalman
filter and its variants. In section 3 we introduce the distributed ensemble Kalman filter (dEnKF)
and demonstrate its capabilites. Finally, in section 4, we compare the performances of all-at-once

2



assimilation with sequential assimilation in synthetic experiments as well as on real-world large-scale
climate reconstruction problems.

Our study shows that all-at-once assimilation performs significantly better on all considered problems,
while still being computationally tractable. This opens new venues for the study of the effects of
covariance localization in climate reconstruction (Valler et al., 2019) and provides the first large-scale
extension of the investigations on sequential vs synchronous assimilation performed in (Nerger, 2015)
that were limited to small-scale setups, due to lack of computational resources.

2 The Kalman Filter and its Variants

Ensemble Kalman filtering (EnKF) is a data assimilation technique that aims at providing an esti-
mation of the state of a dynamical system by combining observed data with a prior model of the
unknown system state. Before going into the details of the EnKF, we review the classic (discrete)
Kalman filter, adopting a Bayesian point of view for our exposition. The interested reader is refered
to (Snyder, 2014) and (Welch and Bishop, 2000) for more details. The exposition presented here is
inspired from the one in (Katzfuss et al., 2016).

In the following, let ψ∗t ∈ Rm denote the unknown state vector of some physical system at time t and
assume that the system is governed by the following dynamics

ψ∗t+1 = Ftψ∗t + δt, δt ∼ N (0,∆t), (1)

where, for all t ∈ N, the dynamics of the system is determined by a linear operator Ft : Rm → Rm

and δ is a random vector modelling our uncertainty in the dynamics of the system.

At each time step t, we are given observations that stem from a linear operator Gt applied to the
current unknown state of the system:

yt = Gtψ
∗
t + εt, εt ∼ N (0,Et), (2)

whereGt : Rm → Rnt is a linear measurement operator and εt is a random observation noise vector.
Kalman filtering aims at sequentially estimating (filtering) the state of the system, based on the
observations available up to the current time step and on some prior knowledge about the initial state
at time 0. In a Bayesian formulation, Kalman filtering assumes that the initial state ψ0 is a realization
of random vector Ψ0 with Gaussian prior Ψ0 ∼ N (µ0,Σ0) and then approximates the unknown
state at time t using the conditional (filtering) distribution of Ψ0 conditionally on the dynamics and
the observations up to t. This conditional distribution is Gaussian with mean and covariance that are
given by:

µt = µf
t +Kt

(
yt −Gtµ

f
t

)
, (3)

Σt = Σf
t −KtGtΣ

f
t , (4)

where the matrixKt is called the Kalman gain and is given by

Kt = Σf
t G

T
t

(
GtΣ

f
t G

T
t +Et

)−1
, (5)

assuming the matrix in parenthesis to be invertible, and the forecast mean µf
t and forecast covariance

Σf
t are given by:

µf
t = Ftµt−1,

Σf
t = FtΣt−1FTt + ∆t.

The key quantity to compute at each iteration is the Kalman gain, which is a m × nt matrix. In
practice, the use of the above Kalman filter algorithm requires computing the m ×m conditional
covariance matrix Σt at each step, which can be prohibitive or even impossible when the state space
is large, as in the case, for example, in climate science applications. The Ensemble Kalman Filter
(EnKF) was introduced to overcome these difficulties.
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2.1 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) can be seen as a Monte-Carlo approximation of the classical
Kalman filter that aims at bypassing the difficulties creaed by large conditional covariance matrices.
Its key idea is to approximate the conditional distribution at each step by a sample (ensemble) drawn
from the distribution. Then, instead of having to update mean vectors and covariance matrices, one
only has to update the ensemble members, thereby reducing the computional burden and memory
footprint.

Considering the same setting as in the previous section, ensemble Kalman filtering begins with an
ensemble, ψ(1)

0 , . . . ,ψ
(p)
0

i.i.d.∼ N (µ0,Σ0) which is an i.i.d. sample from the prior state distribution.
At each step t ∈ N, the EnKF updates the current ensemble members ψ(1)

t−1, . . . ,ψ
(p)
t−1 to a new

ensemble ψ(1)
t , . . . ,ψ

(p)
t so that the new ensemble constitutes an i.i.d. sample of the conditional

distribution at time t. The traditional EnKF produces an ensemble that aproximates the conditional
distribution by updating the mean and deviations using perturbed observations. Indeed, as noted by
(Burgers et al., 1998), one needs to inject randomness at each update step so that the filter does not
underestimate the variance. Hence, at each step t, given data yt, the EnKF proceeds as follows

1. Sample evolution errors δ(i)t
i.i.d∼ N (0,∆t).

2. Forecast members

ψ
f(i)
t = Gtψ

(i)
t−1 + δ

(i)
t .

3. Sample perturbed observations y(i)
t

i.i.d.∼ yt + εt

4. Update the ensemble members:

ψ
(i)
t = ψ

f(i)
t + K̂

(
y
(i)
t −Gψ

f(i)
t

)
. (6)

Here, the ensemble Kalman gain matrix K̂ is the matrix obtained by replacing the true forecast
covariance matrix Σf

t in the equation for the Kalman gain Equation (5) by some estimator Σ̂f
t of the

(unknown) forecast covariance matrix. Indeed, in an ensemble setting, this covariance matrix is not
known and has to be estimated from the ensemble itself.

One sees that, at each step, the EnKF maintains an ensemble of p state vectors that approximates
the conditional distribution, and that the update equations are analogous to the classical Kalman
update equations, with the state forecast covariance replaced by some ensemble estimate thereof and
the observations replaced by perturbed ones. The ensemble update equations eq. (6) were chosen
so that, in the limit of infinite ensemble size, the empirical ensemble covariance converges to the
true covariance. Although theoretically justified, the use of perturbed observations at every step is a
source of sampling errors that reduces filter performances at small ensemble sizes (see (Whitaker
and Hamill, 2002) for a detailed study). Therefore, deterministic approaches that avoid the use of
perturbed observations have been developped. Most of these approaches fall under the category of
square root filters (Tippett et al., 2003), which we present next.

2.2 Ensemble Square Root Filters

Ensemble square root filters (EnSRF) are a class of ensemble Kalman filters that use deterministic
updates to avoid the use of perturbed observations (Whitaker and Hamill, 2002; Tippett et al., 2003).
As for the EnKF, our exposition of EnSRF will mostly follow the one in (Katzfuss et al., 2016) and
we refer interested readers to this work for more details.

Denoting by ψ̄t the mean of the ensemble members at time t and byψ(i)′

t := ψ
(i)
t −ψ̄t the deviations

of the ensemble members from the mean, the EnSRF replaces the update equations of the EnKF by
an update of the mean and an update of the deviations:

ψ̄t = ψ̄ft + K̂
(
yt −Gψ̄ft

)
, (7)

ψ
(i)
t = ψ

f(i)
t − K̃tGψ

f(i)
t , (8)
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where the square root Kalman gain K̃t is a matrix defined by:

K̃t = Σ̂f
t G

T
t

(√
GtΣ̂

f
t G

T
t +Et

)−1(√
GtΣ̂

f
t G

T
t +Et +

√
Et

)−1
(9)

In the above, we assume the matrices in parenthesis to be invertible, and the square roots are allowed
to be any matrix square root of the original matrix. The EnSRF has been found to overperform the
EnKF with perturbed observations for small ensemble sizes Whitaker and Hamill (2002).

2.3 Sequential Filtering and the Problem of Localization

When using ensemble Kalman filters, great care has to be taken in the choice of the ensemble forecast
covariance estimator Σ̂f

t that is used for the definition of both the ensemble Kalman gain in the
EnKF Equation (6) and of the square root Kalman gain in the EnSRF Equation (9). Indeed, in most
applications, the ensemble size is drastically smaller than the state vector, so that estimators based on
the empirical covariance of the ensemble will suffer from undersampling errors.

For spatial data assimilation problems, these undersampling errors often show as spurious correlations
between distant locations. Localization is a procedure to mitigate those and produce a better estimate
of the ensemble covariance than the empirical one (Houtekamer and Mitchell, 2001; Hamill et al.,
2001). The idea behind localization is to taper the long-range correlations in the empirical covariance
by using a distance-depent smoothing. Formally, localization estimates the ensemble forecast
covariance matrix by

Σ̂f
t = Cov

((
ψ
f(i)
t

)
i=1,...,p

)
◦ ρ,

where the first term denotes the empirical covariance of the ensemble forecast, ρ is a symmetric
positive-definite matrix and ◦ denotes elementwise product. In applications where the state vector
represents the values of some spatially varying field f : Rd × R→ R, (ψt)j = f(xj , t), localization
matrices are usually defined by applying a symmetric positive definite function ρ to the spatial
locations ρjk = ρ(xj , xk). We note that there also exists non-distance-based localization approaches,
such as the ones developed by (Furrer and Bengtsson, 2007).

Sequential Filtering:

3 Distributed Non-Sequential Ensemble Kalman Filtering

Inverses and square roots can be (approximately) computed in distributed memory by using
the randomized SVD algorithm from (Halko et al., 2011), which is implemented in DASK as
dask.array.linalg.compressed_svd. We stress that the idea of using randomized SVD in
ensemble Kalman filter has already been developed elsewhere, most notably in (Bopardikar, 2017;
Farchi and Bocquet, 2019). While our work shares this central idea with the ones just cited, our origi-
nality is threefold: i) we provide a distributed implementation in a user-friendly Python package, ii)
we perform a detailed study of the improvements of all-at-once assimilation over the sequential one
and iii) we demonstrate our algorithm one large-scale problems. On the other hand, the previously
cited works do not provide a distributed implementation and do not compare themselves to sequential
assimilation.

In the following, let λi and ui, i = 1, . . . , k be the k-largest (approximate) singular values and
corresponding left singular vectors of the estimated background covariance Σ̂ delivered by the rank
k randomized truncated SVD algorithm of (Halko et al., 2011). Then, one can compute approximate
inverses and square roots of Σ̂ via:

Σ̂−1 ≈ [u1, . . . , uk]

1/λ1
. . .

1/λk

 [u1, . . . , uk]
T

√
Σ̂ ≈ [u1, . . . , uk]


√
λ1

. . . √
λk

 [u1, . . . , uk]
T
.
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In a lazy setting, this means that one only has to store 2k(m+ 1) values, compared to the 2m2 ones
needed for storing the full inverse and square root. We can then use the following implementation for
a single update step of the EnSRF:

Algorithm 1 Distributed EnSRF update

Require: Ensemble ψ(1)
t , . . . ,ψ

(p)
t , observation operatorGt and observed data yt

SVD cutoff rank k.
Ensure: Updated ensemble ψ(1)

t , . . . ,ψ
(p)
t .

Build localized estimated covariance Σ̂t in distributed memory.

(λi, ui)i=1,...,k ← DISTRIBUTEDSVD(Σ̂t, rank = k)

Σ̂−1t ← APPROXIMATEINVERSE((λi, ui)i=1,...,k)√
Σ̂t ← APPROXIMATESQRT((λi, ui)i=1,...,k)

(ψ
(i)
t )i=1,...,p ← KALMANUPDATE((ψ

(i)
t )i=1,...,p, Σ̂

−1
t ,
√

Σ̂t) . Update using eqs. (7) and (8)

4 Experimental Comparison of Sequential and Non-Sequential Filtering

Even if non-sequential ensemble Kalman filtering is theoretically guaranteed to overperform its
sequential counterpart when the assumptions of the Kalman filter are met; practical applications of
the EnKF almost always lie outside of the validity range of these assumptions. We thus here provide
numerical comparisons between all-at-once (aao) and sequential (seq) assimilation schemes for the
EnKF on practical assimilation problems. In order to compare performances, we run the two schems
in a variety of different scenarios where ground-truth for the state to be estimated is available. We
assess the reconstruction quality of the approaches using three different metrics:

• Root mean-square error (RMSE) when predicting with the analysis mean,

• Reduction of error (RE) skill score (Cook et al., 1994),

• Energy score (ES) multivariate scoring rule.

While the first two are commonly used metrics in the Kalman filter community, scoring rules have
yet to see broad application in those fields. Compared to the other metrics, the energy score takes
the full analysis ensemble into account and also allows for theoretically sound ranking of different
models. We provide a more detailed account of scoring rules and their advantages in appendix A.

4.1 Synthetic Test Case

We first compare the all-at-once (aao) and sequential (seq) implementation of the EnKF on a synthetic
test case. The task is to reconstruct a two-dimensional scalar field on the unit square, discretized on a
m×m square grid. The ground truth is generated by sampling a Matérn 3/2 Gaussian process with
unit variance and correllation length λ = 0.1. A starting ensemble (background) is also generated
by sampling p realizations from the same process, putting ourselves in a "well-specified" setup.
All-at-once and sequential implementations are then compared by assimilating n data points at
randomly chosen locations.

To compare the two assimilation schemes, a set of 20 different ground truths is generated by sampling
from the GP model. For each such realization, a starting ensemble is also sampled from the same
GP model. Then, a set of n = 300 randomly chosen data points is assimilated using each scheme
and the assimilation results are compared using the aforementioned metrics. The ground truth are
discretized on a 80× 80 square grid and the goal is to reconstruct the discretized ground truth vector.
Figure 1 and fig. 2 depict the starting setup for one iteration of the experiments. The observational
noise standard deviation is set to σε = 0.01, which corresponds to 1% of the standard deviation of
the GP model used to generate the ground truths and the ensembles. The effect of the observational
noise level on the assimilation is further studied in followup experiments.
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Figure 1: Example of ground truth sampled from the GP model.

(a) RMSE: 0.808 (b) RMSE: 1.283 (c) RMSE: 1.315

Figure 2: Prior mean (a) and selected prior ensemble members (b) and (c). Observation locations
depicted in black. RMSE for prediction of the ground truth in fig. 1 also depicted for each member.

The covariance localization used in the experiment was composition with a spd function (see sec-
tion 2.3). The localization function used was a Matérn 3/2 kernel with correllation length set to 0.2
(twice the one of the GP used to generate the ground truths).

Results for assimilation of the data corresponding to the ground truth from Figure 1 are depicted in
Figure 3. No obvious qualitative differences between the two assimilation schemes are to be found.
Quantitative differences can be computed by considering, the root-mean-square error (RMSE) when
reconstructing the ground truth using the data assimilation results. The RMSE when predicting the
ground truth with the updated mean and two selected ensemble members is also depicted in Figure 3
for each assimilation scheme. One sees that all-at-once assimilation tends to perform better than the
sequential approach.
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RMSE=0.322
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RMSE=0.371

(d) member 1
RMSE=0.346

(e) member 2
RMSE=0.364

(f) member 2
RMSE=0.361

Figure 3: Updated means and selected updated ensemble members, after assimilation of the data
generated from the ground truth in Figure 1.

In order to get a quantitative assesment of the difference in accuracy between sequential and all-at-
once assimilation, we repeat the assimilation experiments 20 times by sampling different ground truth
from the GP model described before. Apart from the reconstruction RMSE, one can also compute the
difference in the reduction of error skill score for the different schemes. The reduction of error (RE)
skill score (Murphy and Epstein, 1989) is a widely used metric for ranking model performances in
atmospheric science. For a given set of forecast vectors ψft , the RE score aims at assessing how well
the forecast improves the reconstruction a given reference ψrt compared to some original background
forecastψbt , over some time period t ∈ T . The RE score is given by (time index ommited for brevity):

RE
(
ψf ,ψr,ψb

)
: = 1−

∑
t∈T ||ψ

f
t −ψrt ||2∑

t∈T ||ψbt −ψrt ||2

Note that while the original definition of the RE skill score does not include a time dimension, it
is customary in climate science to sum over the considered time steps. Compared to the RMSE,
this metric weighs the errors by the best improvement that can be achieved, i.e. errors where the
background is far from the reference are penalized less heavily. The RE score ranges from 1 to −∞,
with a value of 1 corresponding to perfect reconstruction. Figure 4 shows the distribution of the
RMSE and RE score for sequential and all-at-once assimilation. Since these results depend on the
choice of localization used, we also include the results for all-at-once assimilation using the true
covariance matrix that was used to generate the ground truth. This gives an idea of the best possible
reconstruction that can be achieved under the current conditions.
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(a) RMSE (b) RE skill score

Figure 4: Comparison of the distributions (20 repetitions) of the RMSE and RE score.

We see that all-at-once outperforms sequential assimilation for all metrics by an order of 2 to 5% (see
(Wheatcroft, 2019) on interpreting skill scores).

While the RE skill score is widely used in climate science, it has been pointed out in the litterature
(Wheatcroft, 2019) that skill scores can be misleading and biased compared to raw scores. Also, we
would like to stress that, in the context of ensemble Kalman filters, the RE score does not leverage
the full content of the forecast since it only considers pointwise prediction (ensemble mean) when we
have a full ensemble at hand. In order to incorporate the probabilitsic information contained in the
spread of the forecast ensemble in the ranking of the assimilation schemes, one should use proper
scoring rules (Gneiting and Raftery, 2007). We here only focus on the energy score (Gneiting et al.,
2008), which is a proper scoring rule for multivariate forecasts. For a given ensemble of forecast
vectors ψft , i = 1, . . . , p and a reference vector ψrt to be reconstructed, the energy score is given by
(Jordan et al., 2019):

ES
(
ψ
f(i)
t ,ψrt

)
: =

1

p

p∑
i=1

||ψf(i)t −ψrt || −
1

2p2

p∑
i=1

p∑
j=1

||ψf(i)t −ψf(j)t ||

Scoring rules are used for model comparison and ranking, lower scores corresponding to better models,
according to the scoring at hand. While the energy score has some shortcomings (see (Bjerregård
et al., 2021) for a review and presentation of alternative scoring rules), such multivariate scoring
rules have yet to find broad use in climate science and we firmly believe that the multivariate and
probabilitsic nature of ES already offers an improvement over the univariate point-prediction scorings
used in the community. Figure 5 shows that all-at-once also outperforms sequential assimilation in
terms of energy score.

Figure 5: Comparison of the enery score for the different assimilation methods.

The amount by which all-at-once and sequential assimilation differ for the EnSRF depends on the
magnitude of the observation erros compared to the spread of the starting ensemble. Indeed, as noted
by (Nerger, 2015) “When the observation errors [are] of a similar magnitude as the initial errors
of the state estimate, both filter methods [show] a similar behavior. When the observation errors
[are] decreased, the EnSRF [shows] a stronger tendency to diverge and larger minimum RMS errors
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[...] than variant of the EnSRF that assimilates all observations at once.” Figure 6 demonstrates this
effect by increasing the observational error standard deviation σε. Degradation of performance for
the sequential EnSRF at small observational errors is clearly visible.

(a) RMSE (b) Energy score (c) RE skill score

Figure 6: Evolution of the different accuracy metrics as a function of the observational noise standard
deviation.

On top of the above effect, incorrect updates in the localized, sequential version of the EnSRF
introduce dependencies on the order of the observations, as was also noted by (Nerger, 2015). While
this effect is well known in the data assimilation community, it is usually assumed to be of little
practical relevance. Apart from the small-scale experiments (40 observations) perfomed by (Nerger,
2015), evidence for this assumption is lacking. Our aim here and in the next section is to provide a
study of this effect in larger, more realistic situations. Figure 7

(a) RMSE (b) Energy score (c) RE skill score

Figure 7: Comparison of the distributions of the acuracy metrics for different observation orderings
(sequential assimilation).

4.2 Paleoclimate Reconstruction Test Case

In order to demonstrate the superiority of all-at-once EnSRF assimilation over the sequential one
on real-world problems, we now turn to a paleoclimate reconstruction task and perform the same
comparisons as in the last section. This application reproduces a popular Kalman-based method
for climate reconstruction Bhend et al. (2012); Franke et al. (2017). The idea is to blend historical
temperature recordings with computer simulated climate models to get a global reconstruction of
past climate states.

The goal of our paleoclimatic reconstruction task is to reconstruct monthly average temperatures
for the period 1960-1980 using an EnSRF. As a reference (groud truth) for the climate state over
this period, we use the Climatic Research Unit gridded Time Series (CRU TS) dataset (Harris et al.,
2020). CRU TS is a high-resolution (0.5◦ by 0.5◦) dataset of monthly reconstructed climate variables
(mean temperature, precipitation rate, ...) produced by interpolating station data. For our practical
purpose, this dataset can be considered as embodying the state of the art in climate reconstruction.
Our starting ensemble is a set of 30 model simulations from the general circulation model ECHAM5.4
(Roeckner et al., 2003) and is the same as used for several state-of-the-art climate reconstructions
(Bhend et al., 2012; Franke et al., 2017). The simulations incorporate known external forcings such
as solar irradiance, volcanic activity and greenhous gas concentration. To bring the simulations back
towards reality, we assimilate station data of monthly average temperature. The dataset used for the
station data is the international surface temperature initiative (ISTI) global land surface databank
stage 3 station dataset (Rennie et al., 2014). Figure 8 shows an overview of the stations available in
the dataset for January 1960. As for the synthetic test case, we compare the RE skill score, enery
score and RMSE when reconstructing using the forecast mean for the different assimilation schemes.
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Figure 8: Stations in the ISTI dataset for January 1960.

Figure 9 shows the monthly RMSE and ES and demonstrates how all-at-once assimilation by a
magnitude that is often of half a degree in the RMSE. Energy score also indicates that aao should be
preffered over seq.

(a) RMSE

(b) Energy score

Figure 9: RMSE of the reconstruction and energy score for different assimilation schemes.

Figure 10: RE skill scores for reconstruction of the reference dataset over the 1960-1980 period.
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5 Conclusion
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